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NOMENCLATURE

A : Cross sectional area of the beam.

C : Specific heat per unit mass.

¢ : Hight to length ratio of the beam
Cijur ¢ Tensor of elastic contants.

C, :Specific heat per unit mass.

I)i_i : Rate of deformation tensor.

ds  :Increase of entropy.

I : Young's modulas of elasticity.

¢ 1 Rate of change of plastic strain tensor.
K : Applied ]brce

F(oj;): Yield function.

G ¢ Shear modulas.

G Thermal damping function

h : Hight of the beam.

| : Arca moment of inertia.

i ok ¢ Indicies each have arange of 1.2, 3
J : Stress deviation with respect to the mean stress.
[N : Curvature of the beam.

Ko 2 Initial curvature of the beam.

[, : Length of the beam.

M(x,t): Bending moment

m : Mass.,

N{(x,1): Axial lorce.

N

N : Normalized temperature.

n : Number determines the mode shape.

L]

No  : Magnitude of W,
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: Heat flux vector,
: Entropy per unit mass.

: Equillibrium temperature

: Dimentionless Coordinate.
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Greak Symbols:
0;;  : Kronecker delta function.
v : Poisson's ratio.
‘¥ Volume averaged damping of a structure.
Y4, : Local specific damping.
Gy, Stress tensor.
0] : Circular frequency.
Wy Reference frequency
T : Characteristic time.

‘Yo Characteristic damping coellicient,

a  : Coeflicient of thermal expansion,
P . Pensity - (n.mss per unit volume).
0 - Temperature.

(@ : Normalized frequency.

*
»  :phase of N

3 : Thermomechanical coupling parameter.
€; : Stram tensor,

£ : Internal energy per unit mass.

1 : Leme's Constant.

' : Normalized coordinate in x-direction.

1 : Normalized coordinate in v-direction,

A : Complex frequency = im

xi
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ABSTRACT

Theoretical Evaluation of Thermoclastoplastic Damping Coefficient in

Beams of Rectangular Cross Section,

Moh'd Mustafa Oqglah Gogzeh
Supervised by
Dr. Moh'd Nader Hamdan

In this work the thermoelastoplastic damping coefficient and
thermomechanical coupling function of beams with rectangular cross section
undergoing  free transverse vibration have been studied based on the
clementary principles of elasticity, plasticity and thermodynamics[1,2]. The
Mirst and second law of thermodynamics were taken as a starting point to
develope the general theory of thermal damping in elastic - perfectly plastic
solids, According to the known Thomson effect [3] which takes place in a
solid medium an irreversible heat transfer and entropy is created due to an
applied stress field. This entropy is a measure of the amount of work that is
- converted ito heat. i.e mechanical damping. By way of illustration, solution
of the problem of flexural vibration of a Bernoulli - Euler beam subjected to
adiabatic boundary conditions and the magnitude of the thermal damping
cocfiictent was calculated. General formulation of the vibration boundary
valoe problem and thermoelastoplastic damping coefficient for rectangular
cross section beams under general mechanical boundary condition and the
thermal boundary conditions that follows Newton's heat exchange law were
considered.

Solution of the transverse vibration eigenvalue problem is presented
for the general case of boundary conditions. Special considerations were
made (o calculate the magnitude of the thermal damping coefficient in a
closed form for the following three types of thermal boundary conditions:

(1) All surfaces of the beam are thermally insulated.
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(2} All surfaces of the beam are kept at constant temperature.

(3) Lateral surfaces are thermally insulated and the end surfaces are kept at

constant temperature.

Numerical results for thermal damping coefficients of Bernoulli-Euler
beams for the above three cases were presented ina graphical form and
compared with those of Zener and |3,4]. It was found that the present results

differ very slightly from those in [3,4] if the value of nc (nc=-l_,g,, =
o ~0)

wave length l’aran.leter) of the beam is less than 0.1, but the difference
becomes more imbor!anl as this ratio increases from 0.1 to a larger value. It
was also observed that the peak values of the calculated and the approximate
damping coeflicients are ahmost idemical compared with those reported i
[3,4] for all values of wave length parameter ratio go-

The magnitude of the thermomechanical coupling functions for the
above mentioned three cases were obtained in a closed form, also a genceral
formulation for the heat conduction equation in elastic perfectly plastic
medium- were developed and the magnitude of the thermal damping

coellicients were obtained and presented in graphical forms.
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CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

I.1 INTRODUCTION

[t is a well . known fact that beams represent one of the most
important structural members in engineering design and construction. For a
given engmeering structure, several methods based on the well developed
theories of dynamics and elasticity are available to the analyst for a
reasonably accurate evaluation of the inertia and stiffuess properties of the
structure. Although, damping is present in all oscillatory systems only
“rough” approximate analytical and experimental methods are available for
estimating  the danﬁ)ing in a given vibrating structure. The effect of

damping 1s to remove energy from the system. Energy in a vibrating

system is either ‘dissipated into heat or radiated a way. Dissipation of

energy into heat can be experienced simply by bending a piece of metal

back and forth a mumber of times.

In vibration analvsis we are concerned with damping present in the
system, as the loss of energy [rom a vibrating system results in the
decrease of vibration amplitude. A vibrating system may encounter many
different types of damping forces from internal molecular friction to sliding
fiiction and fluid resistance, etc. Generally the mathematical description of
the damping forces is quite comphicated.

Enerpy dissipation is always detenmined under conditions of cyclic
oscillation.  Depending on the type of the damping present the force
displacement relattonship when plotted may dilfer greatly. In all cases,
however (he force displacement curve will enclose an area, referred to as
the hysteresis loop (hat is proportional to the energy lost per cycle. In this

case the area of hysteresis loop corresponds to the energy spent to produce
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depends: on both mechanical and thermal properties of the material such as
i, u, To, p, c.

Due to its importance in the analysis of elastic systems and
viscoelastic systems subjected to conservative and nonconservative forces,
the thermomechanical coupling effect has received considerable
attention]5,6,8] because thermomechanical coupling is always present in
any real dynnmic'systcm. This coupling modifies the stiffitess of the elastic
system and contributes thermal damping to the system. Experimental
results show that the material damping in the elastic range for a wide class
of  metals especailly aluminum is almost entirely caused by
thermomechanical coupling eftect}4].

Thermal damping is another kind of damping presents inside the
material 1tsell’ due to the existence of the temperature gradient between
different parts of the matenal - due to the contineous heating of the
compressional  side and cooling of 1the tensile side of the material
undergoing either transverse or longitudinal harmonic vibration.

This means that thermal damping ts due to thermal currents within
the material which is accompanied by very small loss of stiffness and
strength where entropy is created due to the heat flow a cross the
temperature  gradient  and consequently, work (mechanical energy) is
converted into heat. Therelore one expects that thennal damping arises in
many practical engineering systems, such as bridges and many other

vibrated engineering structures.

A review of the literature seems to indicate that although a few
investigations of stress and strin analysis of elastic-plastic beams at
elevated temperatures have been made m the past [8-23], very little has
been done  on the dynamic analysis of thermally induced motion of elastic

plastic beams. Published theoretical and experimental works dealing with
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thermral damping phenomenon are still limited. The existing experimental
and analytical results indicate that material damping in elastic range of
deformation for a large number of metals can be analyszed within the
fiamework of the theories of coupled linear thermoelasticity. Although
thermal dambing is usually small it has an important effect in the study of
dynamic instablity of elastic continueous. systems subjected to
nonconservative’ forces-and also in the study of thermal balancing of
rotating shafts.

The first study of the thermal damping mechanism was done by
Zener [3,4] 1937 based on the linear theory of thermoelasticity. His work
did not take into account the effect of longitudinal heat flows [induced heat

flow due to the existance of thenmomechanical function].

In recent studies the governing equations for the free - vibration
boundary value problem of a simple rectangular cross section beam
subjected to general mechanical boundary conditions and thermal
boundary conditions that follows Newton's surface heat exchange law have
been derived [4]. These studies were done within the framework of
coupled Tinear thermoelasticity theory. Fung [1] theoretically presented the
main governing equations connecting thermal and mechanical properties of
solids. e derived the main relations which connect the specific heat, the
modulas of elasticity, the latent heat of change of strain and stress at
variable temperatures. Also the relationship between the rate of change of
temperature and strain and the ratio of adiabatic to isothermal elastic
moduli were studied. Mase and George [2] presented the contribution of
stress field tensor which can be divided into two parts: first stress field
tensor and second temperature field tensor.

The concept of using the second law of thermodynamics as a

starting point to develope a general theory to calculate thermal damping in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



solids was studied by kinra and Milligan[3]. Based on this theory the
applied stress field is viewed as the cause which results in temperature
field. This will cause irreversible heat to transfer and entropy is created as
a result thereof. In their work the effect of longitudinal heat flow and the
isothermal boundary conditions were neglected and the problem is solved

only for Bemoulli-Euler beam corresponding to adiabatic boundary

conditions.

The study of thermal damping is of great important in the study of
thermal balancing i.e it is used in on-line thermal balancing techniques for
a large turbo-generator [8]. This technique is proposed to rebalance
automatically a large turbogencrator during operation. The sensitivity of
the rotor unbalances to thermal asymmelries in the rotor is exploited by

mounting some heating elements and using them as controlled actuators.

Until now the thermal balancing of a large rotor is very rare
procedure, and is only done in some specail cases like the static thermal
balancing, which is done by adjusting the ventillation in the rotor in order

to reduce cooling locally.

When the rotor is rotated the bearing reactions of the rotor are
caused by thermally induced unbalances as well as ofher unpredictable
unbalances. Coupled thermoelastic eat conduction equation for the rotor
should be developed and therelore thermoelastic damping is presented

during operation,
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1.2 LITERATURE SURVEY

A lmmited number of studies dealing with the calculations of
thermoelastic damping coefficient have been made, for both circular and
rectangular cross‘ section beams {4,5]. The mathematical formulations
describing the b‘ehavi@r of elastic solid media under the combined action of
heat and exteral loads are examined by different investigators [18-47].

These studies make use of basic concepts of mechanics and

thermodynamics which underline the behaviour, of a contineous media..
4d3cal

In recent studies the governing equations for the free - vibration
boundary valtie problem of a simple rectangular cross section beam
subjected to géneral mechanical boundary conditions and thermal
boundary conditi_ons that follows Newton's surface heat exchange law have
been derived [4]. These studies were done within the framework of
coupled linear thermoelasticity theory. Fung [1] theoretically presented the
- main governing equations connecting thermal and mechanical properties of
solids. He derived the main relations which connect the specific heat, the
modulas of elasticity, the latent heat of change of strain and stress at
variable temperatures. Also the relationship between the rate of change of
temperature and stramn and the ratio of adiabatic to isothermal elastic
moduli were studies. Mase [2] presented the contribution of stress field
fensor which can be divided into two parts: first stress field tensor and
second temperature field tensor.

The concept of using the second law of thermodynamics as a
starting - point to develope a general theory to calculate thermal damping in
solids was studied by kinra and Milligan[3]. Based on his theory the
applied stress field is viewed as the cause which results in temperature
ficld. This will cause irreversible heat to transfer and entropy is created as

a result thereof. The entropy produced is a measure of the amount of work
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which is converted into heat. This theory can be extended to caluclate
thermal damping either due to the application of homogeneous or
inhomogeneous stress lield in elastic medium. Shieh [4] studied the
vibration and thermoelastic damping (with emphasis on the transverse
ones) for circular cross section beams. An exact solution, together with the
thermoelastic  damping coeflicient is obtained for the case of simply
supported beam with end surfaces kept at constant temperature. Also
numerical results for calculation of thermoelastic damping coefficient are
presented for different eigenvalues. Zener [3,4] suggested approximate
formula to calculate the magnitude of the adiabatic thermal damping

coefficient in elastic beams for a sinall range of frequencies.

It is well known that there exists a relationship between the loss of
energy and the maximum stress amplitude. This may be used for
estimating the matenal damping in a cantilever beam [5]. Tlus concept has
been used to estimate matertal damping in terms of stress distribution
functions for each mode of vibration and damping stress functions for each

mode of vibration which is influenced by temperature gradient {5].

In these works the effect of the thermal stress field for each mode of
vibration and the longitudinal heat flow and the effect of the angular
rotation of a generic beam cross section, and the thermal shear force and
the thermal bending moment were neglected.

A peneral method to study thermally induced vibrations of
viscoelastic  plate of circular cross section is proposed by Mazumdar [47].
[t is found that the time behaviour of the plate can be found by assuming
normal mode expansion in terms of eignfunction for the associated elastic

plate problem, and the deflection 1s obtamed by using elastic-viscoelastic
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analogy. Their resulls shows that for values of B (thermal coupling
parameter) less than 0.017 the plate undergoes damped oscillation.

In this work the general theory of thermoelasticity[1,2] was
extended to calculate the magnitude of thermal damping coefTicient in
clastic perfectly plastic solids, also a general formulation of the heat
conduction equation in elastic plastic medium was developed and solved
under  general mechanical boundary conditions and thermal boundary
conditions that follows Newton's heat exchange law, The magnitude the
thermal damping coeflicient as function of frequency parameter for

Bemoulli-Eulear beam was obtained in a closed form for the last

mentioned thermal boundary conditions and compared with that of Zener.

13.4].
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1-3 OBJECTIVES OF THE THESIS

in light of the above introduction, the main objectives of the present
work can be summarized as follows:
[- To formulate the general theory for the free vibration boundary value
problem of a rectangﬁlar cross section beam under general mechanical
boundary conditions and thermal boundary conditions that follows Newton
surface heat transfer law based on the general theory of linear
thermoclasticity. |
2- To calculate the thermal damping coefficient either in elastic or elastic
perfectly palastic medium for simply supported beam of rectangular cross
section in the following cases:
a. All surfaces are kept at constant temperature (i.e isothermal boundary
conditions corresponding to small frequency and small heat generated
inside the beam).
b. Al surfaces of the beam are thermally insulated. i.e. corresponding to a
large fréquency and high heat generated inside the beam.
¢. tateral surfaces of the beam are thermally insulated and end surfaces are
kept at constant temperature,
3. To evaluate the thermomechanical coupling function of the beam under
consideration subjected to the adiabatic and isothermal boundary
conditions.
4. To make a comparison between the above thermal damping coeflicient
functions.
5. To study the relation between the main parameters affecting the thermal
damping function such as normalized temperature, normalized frequency
and normalized coordinates.

6. To campare the above results with Zener's results.
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[.4 ORGANIZATION OF THE TIESIS

The thesis is divided into seven chapters. In chapter one the general
definitions of damping and thermal damping was introduced. Chapter two
gives a review of the main physical concepts and definitions needed to
formulate the thernmal damping mechanism in the elastic ranges of

deformation.

In chapter three and four the coupled heat conduction equation in
elastic perfectly plastic medium is developed and solved corresponding to
adiabatic boundary conditions and the magnitude of the volume averaged
thermal damping coeflicient is obtained in a closed form.

In chaptéf five a general formulation of the vibration boundary value
problem and the governing equations for the free vibration boundary value
problem under general mechanical and thermal boundary conditions are
presented, |

Then in chapter six the magnitude of the thermomechanical coupling
functions and the thermal damping coefficients are obtained in a closed
form. Finally, chapter seven is devoled to the conclusions and

recommendations which may be useful for furture investigations.
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where p is the coeflicient of friction, N is the normal force once the

motion is initiated.

3- Structural damping: This damping results when materials are cyclicly
stressed. Thus e:iergy is dissipated internally within the material itself and may
be wnillen as
Wd=aX? ... (2-1.3)
where |
Wd: energy dissipated per cycle.
a :a constant of proportionality

X2 : the square of the amplitude of vibration.

The effect of damping is to remove energy from the system. Energy in a
vibrating system is either dissipated into heat or radiated away. In vibration
analysis, we are concerned with damping in terms of system response. The loss
of energy will result in a decay of amplitude of free vibration. Energy dissipation
is determined under conditions of cyclic oscillations. In all cases, the force -
displacement relationship (curve) will enclose inside itself an area known as
hysteresis loop, that is proportional to the energy lost per cycle. The energy lost

per cycle (Wd) due to a damping force Fd is given by

In general W, depends on many factors such as temperature and

frequency.
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2-2 THOMSON EFFECT AND THERMAL DAMPING:

Thomson effect says that when a thermoelastic solid material is subjected
lo a axial stress it cools and the compressed side is heated. This means that
temperature  gradient exist inside the material. Also when a homogeneous
material is subjected to any stress field, homogeneous or inhomogencous
different parts of ‘the material underpo different temperature changes. The
existing temperature gradient will result in irreverisible heat conduction inside the
material parts. Thus entropy is created due to the heat flows across a temperature
gradient and conseqiléntly work is converted into heat. This process is the origin
ol thermoelastoplastic damping process. Thermal damping is therefore in addition

to all other sources of material damping present inside the material itself

Thermomechanical coupling effect in the analysis of elastic systems and
viscoclastic systems  subjected to conservative and nonconservative forces,
received considerable attentions because thermomechanical coupling is always
present in any real dynamic system [23, 24, 25]. This coupling slightly modifies
the stiffhess of the elastic system and contributes thermal damping to the system.
lixperimental result shows that the material damping in the elastic range for a
wide class of metals especailly aluminum is almost entirely caused by

thermomechanical coupling effect.

However, the deformations due to the extemal loads are always
accompanied only by small changes in temperature[23-33], and therefore it is
sometitnes reasonable to calculate these deformations without taking into account
the elfect of thermal expansion. Similarly, if strains are produced in a body by a
nonuniform temperature distribution, it would seem intuitively clear that the
influence of these strains on the temperature itself should not be large. In actual
cases coupling term between heat and strains can't be disregarded for many kind
ol problems especaillly those in which the thermoelastic dissipation is of primary

interest.
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It should be noted that through thermomechanical coupling, a portion of
kinctic energy of the vibrated systcin is converted into heat energy, which causes
temperature gradient inside the solid bodies and therefore produces material
damping of thermoelastic nature. When a material is subjected to a variable
strain, many things happen inside which are not explicitly observed. For example
when a metal is iiniformely straimed in a macroscopic sense, the individual
anisotropic crystals are strained differently and thermal currents that circulate
among the crystals are generated; however, the interstitial atoms move ina

considered crystals or among the crvstals.

Coupled linear thermoelasticity and plasticity theory can be used to predict
material damping in elastic and plastic range of deformation and coupled one
way heat conduction equation can be used to predict material damping in plastic
range of deformation. Although this thermal damping is usually small, it has an
important effect of the dynamic instabillity of efastic contineous systemns (solid
bodies) subjected to conservative or nonconservative forces and also in thermal
batancing study. The remainder of this chapter briefly outlines the main physical
concepts and laws of the stress - strain and the intemmal energy of the solid
material which will be used later to evaluate the magnitude of thermal damping
coellicient in a vibrating elastic - plastic structure. More indepth discusions of

concepts and laws are given in the indicated references

2.3 SMALIL, DEFORMATION THEORY-INFINITESIMAL STRAIN
TENSORS: In this section the relations between infinitesimal strain tensor and
the displacement vector are developed based on the principles of continuwm
mechanics. The so-called small deformation theory of continuum mechanics has
its basic conditions, the requirement that the displacement gradients be small

compared to wnity. The Eulerian finite strrain tensor €,, has the form|1,2
I ity ij
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where u is the displacement vector. If the displacement gradients are
small the finite strain tensors in equation (2-3.1) reduce to infinitestinal strain
tensors, and the resulting equations represent small deformations. In equation (2-
3.1) if the displacement gradient components uyj,uy; are each small, the
product terms are negligible and may be dropped, and the resulting tensor is the

Lulenian mfinitesimal strain tensor €ii which is denoted by

|-
€= 5(..,4 fug) (2-3.2)

This equation will be used later in to develope the coupled heat conduction

equation in elastic - plastic structure.

2-4 LINEAR ELASTICITY: HOOK'S LAW AND STRAIN ENERGY
FUNCTION

In this section the main relations between stress and strain energy function
are presented based on the generalized Hookes Law. In linear elasticity theory it
is assumed that displacements and displacement gradients are sufficiently small
so that no distinction neced to be made between the Lagrangian and Eulerian

descriptions. The linear strain tensor is given by[1, 2]

Assuming that the deformation processes are adiabatic (no heat loss or
gain) and isothcimal (constant temperature), the constitutive equations for linear
clastic solid relate the stress and straim tensors are given by the generalized
Hooke's law|[1,2]

Gij = Cijk"r EI(I“ ...................
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where Cikm is a tensor of elastic constants, oij is the stress tensor, and e, is
strain tensor.  When thennal effects are neglected the energy balance or first law

of thermodynamics may be written as| ,2,6]

de 1o o (2-4.3)
d_t - pCij Sjj e )

where € 1s the internal energy per unit mass and p is the mass density per unit
volume. The internal energy in this case is purely mechanical and is cailed the
strain energy (per unit mass).

Let the stram energy per unit volume defined as €, € = pg, then from above

one has

i
©=3Cjkm Sij Skm 0 e (2-4.4)
or '
_ 1
E=500iSj e (2-4.5)

F'rom equation (2-4.5) one can calculate the magnitude of the strain energy

i the stress and the strain tensors are known.

2-5 ISOTROPIC MEDIA AND ELASTIC CONSTANTS

In this section Hooke's law in terms of elastic constant is developed for an
isotropic media, and the mam relations between elastic constants are
summarized. Bodies which are elastically equivellent in all directions possess a
complete symmetry are termed isotropic. For isotropic materials the number of
elastic constants reduces to 2, these are E and G, and the matrix of elastic
constants 1s symmetric regardless of existence of a strain energy function.

Hooke's law for isotropic body is written in the form[1,7]

i = A 6§j € 121 i e (2-5.1)
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where A and p are are lame's constants which depend on the modulas of elasticity
of the material E -and possion's ratio v. For a simple uniaxial state of stress in x

direction, engineering constants L2 and v may be used through the relationships

oxx=€xx-E L (2.5.2)
6yy=eZZ= -V exx ................. (2.5.3)

In terms of these elastic constants Hooke's law equation (2-5.1) for isotropic

bodies becomes:

e v
Gij = I_+_\7[ Eij 123 ) i €Lk ) .............. (2-5.4)
Note that if k is the bulk modulas and G is shear modulas then,
o E  _3+2p . E i
k_.}(l—Zv)_ 3 ‘”"G_Z(I__—v) ......... (2-5.5)

FEquation (2-5.4) describes the relation between the stress and the stramn for

an istropic elastic material.

2-6 INOOKE'S LAW INCLUDING THE EFFECT OF THERMAL
EXPANSION:

Based on the elementary principles of thertoelasticity a generalized form
of Hooke's law including the ellect of thermal expansion are developed. When
thermal eflects are taken into account, the components of linear strain tensor €
may be assumed to be the sum|[2}].

where €, (5) is the contribution from stress field and Ej; (1) is the
contribution Irom temperature field. €; (” may be assumed to take the linear
form|1,14]
e =a (1108 s (2-6.2)
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where o is the linear coeflicient of thermal expansion, To is the reference
temperature and § is the kronecker delta function. Substituting equation (2-6.2)

into equation (2-6:1) and using equations of isotropic media leads tof14,18]

|
El'j— il_l o

or
Gii=MA8j e 2 g (T-Ty) o (2-6.4)

This equation relates stress to strain in elastic solids taking into

consideration the effect of thermal expansion due to the applied stress field. This

equation will be used later in chapter (3) to develope the coupled heat conduction

equation in elastic solids. which is known as Duhamel - Neumann relations{2].
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2.7 BASIC CONCEPT'S AND DEFINITIONS OF PLASTICITY

in this section to section (2-13) the main basic assumptions and
definitions of the mathematical theory of plasticity are summarized. Elastic
deformations are characterized by complete recovery to the undeformed
configuration upon removal of the applied loads. The plastic defonnations
depends upon the stress magnitude and not upon the straining or loading
history. In particular, deformations which results from the mechanism of
slip, or from dislocations at the atomic level, and which thereby lead to

permanent dimensional changes are known as plastic deformations.

.
»

The primary concerns here are with the mathematical formulation of
the stress-strain refationships suitable for the description of plastic
deformation, and with the establishment of appropriate yield criteria for

predicting the onset of plastic behavior.

Allthough it is recognized that temperature will have a definite
influence upon the plastic behavior of real material, it is customary in
much of plasticity to assume isothermal conditions and consider
temperature as a parameler. Aso it is common practice in plasticity to
neglect any effect that the rate of loading would have upon the siress strain

curve.,

Most of the .theories for analyzing plastic behavior may be looked
upon as a geller'ali;znli()ll of certain idealization of one dimensional stress
strain curve. Two of the most commonly used models for the idealization
of stress-strain relations in plasticity are the two shown in Figure  (2-7.1)
along  with a simple mechanical model for each. In the models the
displacement of the mass M depicts the plastic deformation and the force F

plays a stress role.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



20

(a) Rigid - perfectly plastic

1)
oy
M F
PP 7T TN R PV X PPA
€ Itouph
(e} Nigid  Perfectly [lnstic
(b) Elastic - perfectly plastic
G
"' - — - .
r L
/. A A ——
1
NI R TR Yy
€ - Rough e

() Elaatic - Pevfeetly Plostic

Fig. [2-7.1]

In Fig. 2-7.1a, elastic response and work hardening are missing
entircly, whereas in (b), elastic response prior to yield is included. In the
absence of work hardening the plastic rcsponsé is termed as perfcctly

plastic.

2-8 IDEAL PLASTICITY:

We can  defline ideal plasticity as plastic deformation without strain
hardening. Work hardening in a simple test means that the stressis a
monotonically increasing function of increasing strain. In general, work
hardenming  means that for all added sets of stresses a positive work is done
by external agency during the application of the stresses, and the net work
performed by it over the cycle of application and removal is either zero or

positive,
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Assume that a yield function f((sij) exists, which is a function of the

stresses oij only and not dependent on plastic strain el then the rate of

change of plastic strain tensor eij? is given by[1]:

o (P}

1 af
| R -
i n a“ij ............... (2-8.1)

where n has the significance of the coeflicient of viscosity. The sign of jt

is restricted by the condition that plastic flow always involves dissipation

of mechanical energy W, defined as:

Using Von Mises yielding condition one gets 1

f(oy;) =J2- K2 . e .(2-8.3)

1 . -
where Iz = 3 %] ® i k = constant and o'ij is the stress deviation tensor.

Substituting equation (2-8-3) into (2-8.1) yields.

PN{ ) D I S S (2-8.4)

I
"y B 6Gij y
This equation relates the rate of plastic strain tensor to the stress
deviation tensor depending on Von-Mises criteria. This equation will be

used later in chapter (4) to develope the coupled heat conduction equation

in plastic solids.
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2.9. FIRST LAVW OF THERMODYNAMICS:

A briel summary of the basic structure of general theory of
thermodynamics is given in this section. Only closed systems, i.e systems
which do not exchanpe matter with their surroundings, are considered
here. Also the system is to be assumed isolated, i.e no interactions

between the system and its surroundings.

A system surrounded Dby an insulator is said to be thermally
insulated, and any process taking place inside this system is called
adiabatic. A system is said to be homogencous if the state variables not

depend on space coordinate.

The first Law of thermodynamics can be formulated as follows. If a
thermally insulated system can be taken from a state Ito a state Il by
alternative paths, the work done on the systemn has the same value for
every such (adiabatic) path. This means that the increase of energy, for any

adiabatic process is equal to the work done on the system. Thus
A energy = work done (W) (adiabatic process) ......... (2-9.1)

"‘Now define the heat Q absorbed by a system as the increase in

energy of the system less the work (W) done on the system. Thus,

Q=Aenergy-workdone ... (2-9.2)
or

A encergy = Q + work done  (all processes). ... (2-9.3)
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Then by comparing of equation (2-9.1) with (2-9.2) one observes

that the energy of a system can be increased either by work done on it or
by absorption of heat. The total energy is made up of kinetic energy k,

gravitational energy G, and internal energy E.

Il both mechanical and non-mechanical energies are to be
considered, the principle of conservation of energy in its general form must
be uscd. In this form the conservation principle states that the time rate of
change of the kinetic plus the internal energy is equal to the sum of the rate
of work plus all other energies supplied to or removed from the continuum
per unit Iime."‘"l'herefore the energy principle for a thermomechanical

contimuum is given by[1,2]
K+U=M+0Q ... (2-9.4)

where K is the kientic energy of the system, U is the intemal energy, M is
the mechanical energy, Q is the heat added or removed from the system.
The gencral form of the first law of thermodynamics for a

thermomechanical continuum can be written in the form [1,2]

pE = i éij +a; 4 ph ( 2-9-5)
where &  is the interal energy per unit mass, p is the mass density of the
solid medium, oij is the stress teneor, &;; is rate of deformation tensor, q is
the heat fux, his the heat supply per unit mass. Noting that this equation
represents the first law of thermodynamics for elastic solids and will be

used later to develop heat conduction equation in elastic solids.
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2-10  LINEAR MOMENTUM PRINCIPLE AND EQUATIONS OF
MOTION

A moving continuum which occupies a volume Q at time t with
body forces F per unit mass has a linear momentum L defined as the
velocity vectorV summed over incremental mass dm or as the product of a

velocity vector with density summed over incremental volume:(i.e)

L=Ivdm=]vde .................... (2-10.1)
Q

m

Nothing that p d Q = constant i.e (p, dQ, = p dQ)

d . _d _ )
a[(po 4Q,) = S =0 i (2-10.2)

And assuming that the stress tensor is symmetric, we get the
equation of motion of the undeformed cartesian coordinates in the forn
[1,2,3).

cijteF=pi; e (2-10.3)
where i is the stress tensor and ui is the displacement vector. It is to be
noted that this equation will be used later in chapters (3) and (4)to

develope general theory of thermal damping in elastic-perfectly plastic

solids.

2-11. ENTROPY AND SECOND LAY OF THERMODYNAMICS
The second Law of thermodynamics postulates the existence of two

distinct state functions; T the absolute temperature, and S the entropy with

certain properties:

I. T is a positive number which is a function of temperature.

2. The entropy of a system is equal to the entropies of its parts.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



25

3. The entropy of a system can change nto distinct ways, namely, by
interaction with the surroundings and by changes taking place inside the
system. We may write

dS=dSe+dS; (2-11.1)
where dS denotes the increase of entropy of the system, dSe denotes the
part of this increase due to inlcrnctidn with the surroundings, and dsi
denotes the part of this increase duc to changes taking place inside the

system.

The term dSi is zero for reversible process.

dSi>o irreversible process ... (2-11.2)
dSi=o reversible process ... (2-11.3)
In a reversible process, if dq(R) denotes the heat supplied per unit

mass to the systeny, the change dSe is given by
dSe =g—(#{—) (reversible process) .......... (2-11.4)

2-12. HEAT CONDUCTION

The entropy production per unit volume are developed in this
“section based on the clementary principles of heat transfer in a solid bar.
Cousider the heat transfer in a slender solid bar with continuous
temperature gradient in the dircction of the lengthwise axis of the bar x ,
as shown in Fig. 2-12.1 The tempenture is assumed to be uniform in each
cross section of the bar and the walls except the ends are thermally

insulated. Furthermore it is assumed that the bar is free of stresses.

T(x)
h—» ¢(x) 4— h+~a—ll.dx
ox
S(x)

Fig. [2-12.1] Heat conduction
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Let T(x), &(x), S(x) denote, respectively, (he temperature, the internal
energy per unit mass, and the entropy per unit mass of the solid. Leth
denote the heat flux per unit area per unit time in the x- direction. If Q

represents the heat transported to the right across a unit cross-sectional

area, then

h-—iQ—

-5 (2-12.1)

Now consider the changes of heat occuring in a small element of length dx

in a small time interval dt. The net increment of heat in this element is

dQ = hdt - (h + h.dx;).dt = —h,;.dxgadt (2—12.2)

Based on the basic concepts of thermodynamics and heat transfer

the entropy flow may be defined as /T, and the entropy production per
unit volume is defined as
ds h ..
=Ty 2-12.3
p (lt .lqz .i ( )
Generalizing the above results to the three-dimensional case, the

entropy production per unit volume s

ds {hxaT hy oT  h, 9_1]

pai—=_'l*26x :F_a—i T2 aZ
hT,
S (2-12.4)

where hx, hy, hzare the three components of the heat flux vector h, i.e hx

is the heat flux per unit area across a surface element normal to the x-axis,

ect. 1t should be noted that the above equation will be used in section (3-3)

and (4-5) to calculate the temperature gradient in elastic - perfectly plastic ;
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solids and then to calculate the magnitude of the thermal damping

coellicient.

2-13 EULER EQUATION FOR BIEAMS |
To determine the lateral vibration of beams, consider the forces and

moments acting on an clement of the beam shown below.

Figure [2-13.1]
Where V- and M are shear and bending moments, respectively, and

p(x) is the Loading per unit Length of the beam. Summing forces in y -
direction yielding

dv-p(x)dx=0 .. (2.13.1)
Suiming moments about any point on right face of the element

(Il\l—v(lx—% PXHdx)2=0 ... (2.13.2)
Also
2 v
ant _ \Y dN_dv pP(x) ... (2-13.3)

dx Tdx2  dx

The bending moment is related to the curvature by flexure equation,

according to Bernoulh - Euler beam theory [16]

2,
M = m;;'}lz ......... (2-13.4)

Substituting equation (2-13.5) into (2-13.4) one get
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d? diy )
axz[”usz"’(‘) .......... (2-13.5)

Assuming harmonic motion, and since the inertia force is in the

same direction of p{x), as shown in Figure 2-13.1 one can write
p(x)=poly (2-13.6)

Where p is the mass density per unit length of the beam. Then

Ay

E‘_l 954 PO y=0 . (2-13.7)
Let
2

$_ 0 .

B*=p T (2 13.8)
leads to

("‘y _nd - .
m B y 0O e (2 13.9)

The general solution of the above equation which defines the mode
shapes takes the form y = Acos By + B sin p y + Csinh  y + D cosh By
where A, B, C, D are determined from the specified boundary conditions,

which also yields the characteristic equation, definding the natural

frequency parameters Bi. The natural frequencies @,'s are then found to

be
El El
®y = Pa’ f—:([z,,L)zJ S (2-13.10)
P pL
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2-14 ENERGY METHODS: _
The strain energy Uo per unit volume in a body with strains €jj and

stresses aij which relate the effect of thermal expansion is defined as

Uo =-;-(Gij —(1T5|j)0'ij ................. (2-14.1)

using Hooke's Law equations (2-4.2) and (2-5.2) leado to

\Y
(Uxx Oyy +Oyy Ozz + Oz Uxx)

1 2, .2 2 )
ll():E—é(G" +0 yy"‘()' 77 "‘E

I
——(szy +0'2yz +Gzzx) ......... (2'142)

+
2G

The total energy U is the integral of Uo over the entire volurne.

U=|[fuodv ... (2-14.3)

v

Note that stress strain relations including the effect of thermal
expansion can be written using Hooke's law in the form

e .= [l(o SV )+ AT e (2-14.4)

€4y = 1! (0~ Vo )+l ... s (2-14.5)
€w=2G Oy v cereeee (2-14.6)

All Rights Reserved - Library of University of Jordan - Center of Théis Deposit



30

CHAPTER THREE
GENERAL THEORY

3-1 INTRODUCTION

In this chapter the first and the second law of thennodynamics,
Newlon's law of motion and Fourier law of heat conduction presented in
chapte (2) are taken together to develope the coupled heat conduction
equation in a solid medium, Also the main concepts needed to define and
to calculate the tocal andthe averaged damping capacity of the structure
are introduced. Then the coupled heat conduction equation is solved under
adiabatic boundary condition for the rectangular cross section beam-and
the magnitude of the local and the averaged damping capacity are obtained
in a closed form.

‘Ihermomechanical systems are subjected to the same general
conservation laws with regard to both mass and momentum. However the
law ol conservation of energy contains both mechanical and thenmal
encrgy which are related to the change of entropy. Thus a complete

description of the evolution of a system requires a knowledge of the

entropy production. These laws, taken together, determine the evolution of

the system.

o demonstrate the procedure let us consider a solid body
occupying a setof rectangular cartesian coordinates. Assume the material
is linear elastic and that it is stress free at uniform temperature Towhen all
external forces removed. The stress free state will be denoted as the
reference state, and the temperature T as reference temperature.

The displacement u; ol every particie in the instantaneous state from

its position in the reference state will be assumed to be small so that the
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infinitesimal strain components uijx uji are neglected. Thus from equation

(2-3.2) the infinitesimal strain tensor is given by

ij= 3 (Ui U0) TR & 5 W )

aul aul -
\:6\:] + a‘i] ,i,j=12,3 veesnseses(3-1.2)

Following are the main equations and definitions which will be used

later to develope the coupled heat conduction equation in an elastic solids.

the first law of thermodynamics the energy principle for
continuum  after substituting equation (2-10.3) into-.

equations (2-9.5) afler some mampulahons

['rom
thcrmomcchanical
equation (2-4.4) and using
viclds
where g : specific internal energy per unit mass
oij: stress tensor

p: density of the material

hii = qid: heat flux per unit area per unit time

de
ltJ — rate of deformation tensor given in section 2-7.
{
de | d 1
OL g —ei——hji e 3-13
d p 1] l" t] p [ ( )

The thermoelastic Hooke's taw for linear elastic solid which relates the

stress and strain tensors and including thermal effect is obtained usiiig

looke's equations including thermal expansion[2] which can be written as

GU—-)\.BII €k TN Sji- -(3h+2ma o (T- -To) e (3-1.4)
_ _ Ev _

2. = Lame s constant 07 v) (I-Zv) ....... (3-1.5)

S e (3-1.6)

2(|+v)
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Also the Fourler law of heat conduction i a solid medium can be wrtten
as|1,2] '

q;= kij . T,i ,i = |,2,3 ........... (3-[.7)
where
q; =Heat flux per unit time per unit area
k.. = therinal conductivity tensor

ij
And Newton's law of motion is given by equation (2-10.3)

GjiitP Fi=poOi e (3-1.8)

Set Fi = o the above equation simplifies to

o’ vi 319
Gi_i‘j= p—é-?z— ............................ ( -1. )

When entropy is created, mechanical energy is necessarily

converled into heat. If we deline Aw as dissipation of mechanical energy

that is converted into heat during one cycle then
Aw =pTo Sp (3-1.10)
Ius the stored elastic encrgy per unit volume is [13,14]

_CijkL =T El\'l,'-'"""""""'"""(3— l.ll)

2
Gij - CijkL €KL "()()kCS Law

W=

Define w  as the maximum stored of elastic energy per sycle for

isotropic material, then
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1 ..
W -——' i Gli) Gij
Now we define a local specific damping capacity (SDC) as:

Mechanical energy dissipated per cycle o (3.113)

WL =SDC =
Maximum stored elastic energy during the cycle

- Aw
W
ped damping ‘¥ of structure of finite extent may

Wy,

Finally the volume - avera

be defined as]3,4]
. IAw dv I‘I’L wdy

Y=V R O 3.1.14
_[w dv Jw dv ( )
v A4

This equation is to be used later in this chapter and in chapter (4) to

determine the magnitude of the volume-averaged thermal damping

coefficient W after determining the maximum stored elastic energy w, in

the total volume of the structure.

3-2 COUPLED HEAT CONDUCTION EQUATION
ast equations, a general form of the coupled heat

stic solids is developed. Define a free energy

Based on the |
conduction equation in ela
function F at constant temperature (isothermal process) as

F=g-Ts e

where ¢ is the internal enetgy per unit mass, T temperature, S is the

specific entropy, and F is denoted a work function, assumed to be function

of strains and temperature

F=1(eg T e (3-2.2)
We have also from Clausius - Duhem inequality function {4,5]
................ (3-2.3)

p € = Gy € +p 1S
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Differentiating equations (3-2.1) with respect to time and multipling the

resulting equation by p; and substituting & from equation (3-2.3) yields :

pF = Ojj Gu . ¥ S'i‘...........................(3— 2.4)

From second Law of thermodynamics for a reversible process [4,5]
S = F(eij,T) where S is the entropy , €ii is the strain tensor and T is the

temperature:

ool 9 Sij 0s ...
—qi,i=pls=pl[ > : o IJ ............ (3-2.5)
) Y

At constant deformation €ij = o, and the above equation yields
_qi=pce,T (3-2.6)

where Cv is the specific heat at constant deformation comparing equation
(3-2-5) with (3-3.6) one gets

ov=195 (3-2.7)

dT
Combining (3-2.3) with (3-2.4) and (3-2.5) and according to the second
law of thermodynamics, the Clausius - Duhem inequality [2] can be
written as:

a g ',
—0ii = kT,ii = pl(-ré-i'—J E,J +%TJ ............... (3-2.8)

From thermoelastic relations equation (3-1.4) one has

Bcij
W = (31. + 2’.[)(1 8ij
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Now substituting equation (3-2.9) into (3-2.8) and after some

manipulations one gets the coupled heat conduction equation in the form
kTii = pe, T +(3A+2p)aT &ii e (3-2.10)

For class of problems under considerations the variation of
temperature is very small and €; may be replaced by total strain eyy.
Therefore the coupling term T may be replaced by equillibrium

temperature To-to obtain one way coupled heat conduction equations:

rii=Pe T, M+ O kK e, veen(3=2.11)
kK ot k at
1i=Pc 9T, EBe To? W ... vereseenones (3=2.12)

kK at k(1-2v) ot

This equation when solved determines the temperature distribution
inside a contineous elastic solid material. It should be noted that this

temperature gradient is due to the variations of stresses and strains-inside

the material itself.

3-3 BOUNDARY VALUE PROBLEM I: FLEXURAL
VIBRATIONS OF BEAMS WITH RECTANGULAR

CROSS SECTION.

in this section the coupled heat conduction equation (3-2.12) is
solved under adiabatic boundary conditions. Consider an isotropic,
homogeneous, beam with constant rectangular cross section and height h
undergoing harmonic flexural vibrations in the x-y plane. Assume that the
centriodal axis occupies the x-axis and the displacement is confined to the

y-axis. The curvature of the beam is given by
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(3-3.1)

beam-and o is the circular

K =Ko ei(!)t ....................

where Ko is the initial positive curvature of the
hat the curvature of the

of the beam. Now

frequency in radians per second. Also assume t

beam causes fluctuating temperature across the y-axis

from equation (2-5.3) one gets:

Ew=€n= "
eixz-ykz-)'ko e“‘-t ssnscasredone (3'3.3)
Ep=6Exx T Eyy + €4,

e= - (1-2V)Kkoye™ i (3-3.4)

The coupled heat conduction equation (3-2.12) can be written as

s _PC oT Ea . 0 €k )
I,ii = i ot +k(l_2v).10.———n—at ............... (3-3.5)

Using cartesian coordinates, equation 3-3.5 becomes.

orr o o1 pc O T +Ea 0 e
o ot ol _pec 00 YRR TRk .(336
axitayi a2 kot k(i-2v) ot (3-3.0)

where
= —(1- 2V)K ye™"
J € . e
T Kk - jm(1- 2\»')146_\'-95-‘ll

ot

Since the displacement is confined to the y-axis equation (3-3.6) reduces

lo:
*T _pe Ol _
oy? k ot

ifaces are assumed to be adiabatic; therefore the

. ExTo
—iw

Koy €™ e (3-3-7)

The beam st

boundary conditions aty =+ (h/2) are:
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Y=y/h , Q=01 , N‘:A,f. .................. (3-3.13)
where
2 -
=P czh AT = Ehk,T,
n°k 2pc

Now substituting these into equation. (3 -3.7) yields:

1 _ %
‘\T}; A IN= 21 120N e (3-3.14)

This is a second order linear differential equation with complex
coefficients. Note that W represents the change of the normalized
temperature along a normalized coordinate.

The boundary conditions for this beam are given by

AN [ (3-3.15)
OV[v=1" 9V v

Equations  (3-3.1) through (3-3.15) constitute the general
formulation of thermoelastic  damping problem of an isotropic,

homogeneous constant rectangular cross section beam.
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3-4 SOLUTION OF TIE DIFFERENTIAL EQUATION
The solution of equation (3-3.14) has two parts; a homogeneous
solution and a particular solution. The homogeneous solution to equation

(3-3.14) is given by:

f*}(\')=/\ ) (Y | g oy G-4.1)

where A, B are constants to be determined from the boundary conditions
\
giving by equation (3-3.15). Set  $ = #{€212)2 then equation (3-4.1) can

be written in the form

®

_a N sty
N(Y)= A cs(|+.)\ o

+B ¢ (3-4.2)

The particular solution of equation (3-3.14) takes the form

*

N(Y)=C.Y+Co ... (3-4.3)

Substituting equation (3-4.3) into cquation (3-3.14) one gets C,=2,Co =0,

the particular solution takes the form

*

NP =2Y oo (3-4.4)

Therefore the general solution of the boundary value problem can be

written as follows:

N'(Y)=2Y 4 A MDY o g esiy (3-4.5)
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where A, B are constants to be determined from the boundary conditions
in equation (3-3.15). Now substituting the boundary ‘conditions from

equation (3-3.15) leads to.

5
B_W seesssresnnnne (3'4.6)
B R,-2
A=T R vevvereens (3-4.7)
wh_erel
. 1, . -1
Ry=(1+i)s e Ry=(1+i)s ez

Therefore the general solution of equation (3-4.14) is given by

R v v :_2_ sa+iy , BR2 1 _saspy
N'(V)= 2V i @Y 4 2 5 sty

Note that the niagnitude of change of the normalized temperature N
as function of the notmalized coordinate Y is poltted in Figure (3-6.1) for

different values of norimalized frequencics.

3-5 CALCULATION OF THE LOCAL SPECIFIC DAMPING
CAPACITY [SDC]. |
Local specific damping capacity is defined as ¥,

dissipation of mechanical energy during one cycle
W Aw [or part of mechanical energy that is converted into heat]
W maximum stored strain energy during that cycle

.............. (3-5.1)
Using the second law of thermodynamics equation (2-12.4), the rate of
entropy created due to irreversible heat conduction in a solid can be

calculated as:
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i SRR P SR (3-5.2)
at p'rz t
L1
TY
ri-2Tare S (3-53)

Now differentiating equation (3-4.8) and substituting into equation (3-5.3)

leads to:

.[‘1i=§;l“=AT eim[2+———-——2 (l+i)s es(|+i)Y_BR2-2(1+i)s e-S(l"’i)Y

R1+R2 Rl

Now rewriiting Ri, R2 in tenms of trigonometric functions and substituting

equation (3-5.4) into equation (3-5.2) yields:

" [2+SG¢os(sncosh(sv)-(sinh(sv)sin(SY)+cosh(SY )cos(SY)]

p [2V + G(sinh(SY)Cos(SY) + iG(cosh(’W)Si“(’W))]2

where

. sinh( l S) cos I S+ icosh(1 S)sin(ls)
(1-1i) 2 2 2 2
G=-2 S

sinh Scos S +i coshSsin S

! . J
Aw=pTo Sp . (3-5.6)
From equation (3-1.12) the stored elastic energy per unit volume is given
by w
W=20ii € e (3-5.7)
1

=%[y’k2+2v2y2k2] ............ (3-5.8)

Noting that k=Ko el®t and substituting into equation (3-5.8) leads to

All Rights Reserved - Library of University‘of Jordan - Center of Thesis Deposit



42

2 .
W= %'Koz(l + 2v2)\-'2e2'“" ....................... (3-5.9)

Substituting these values of Sp and W, AW into equation (3-5.1) and

noting that

_2n o Er To?
pc

Yo=-"T “R O . (3-5.10)

one oblains;

\11|‘=_ﬂ9_, 1- 1 -
gy? cosh(2S) - cos(2S)

x.‘['ZcoS[S(Y' %)}“S"[S(”%)]

+ 2COSI:S(‘Y + 1

2
-2 CosI:S( Y+ -;—)

IE
ferofo(v+3)

w3)

ool 1)

+2c0s(S)Cosh(25Y)
- 2Cos(2SY)Cos(S)

+ cos[2S(Y +l) + cos[ZS(Y——l-\]
) 2)
-cosh[ZS(Y+%)]—coshl:ZS(Yué)] J» ......... (3-5.11)

From equation (3-1.14) the volume-averaged damping is defined by:
IAW dv I‘l’L\V(I\’

_V Y}
jwdv dev

v v

lll

(3-5.12)

Where w is given by equation (3-5.9)
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Eh2Ko?

W ———i—-(l+2v2)\'2 Fot  (3.5.13)

Substituting the value of W from equation (3-5.13) into equation (3-

5.12) leads to

|
+

2
y WL.YZ2 dY
_-—l
_ 2
V= [
2
[Y2 o
-1
2

Substituting the value of ‘YL from equation (3.5.11) and integrate with

respect to Y one obtains

Wy = G‘I’OII_ 1 sinhi(2S) —Sin(25)2 — Cos(S)sinh(S) + 2sin(S) cosh(S)
cosh(2S) - cos(2S)

....... (3-5.14)
3-6 BOUNDARY VALUE PROBLENM 1: NUMERICAL RESULTS
Now going back to equation (3-4.8), and assume No and ¢ to be

respectively the magnitude and the phase of the normalized tempetature
*

N, one can write
*

_N =No e® ... (3-6.1)

From equation (3-4.8) and afler some manipulations the values of No and

¢ becomes:

T 2
N()-—-[[ZY— 2AM+N) |2+[ M-N ] ] ........... (3-6.2)

s(c2+D?)  [cr+D?
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| M-N ]

b= tan| . LC+D? (3-6.3)

[2\. 2(M+N) } J—

s(C? +p?

From the above equation one can see that the volume averaged
thermal damping coefTicient is only function of the normalized frequency

for constant values of Wo, where

M=c[a.E—b.F|+ D|D.E+2.Fluererrrrerer(3—6.4)

N=¢|b.E+a.F|+Db.F = a.Elurrrerrerrens(3 - 6.5)
a = sinh lS cos lS b = cosh 1S sin lS
2 2 2 2
C = sinh|S]|cos|S] D = cosh|S]sin|S]
E = sinh(SY)cos(sy) F = cosh|SY].sin[SY]
............ (3-6.6)

Now two cases will be considered:

1-  When the frequency is very small, the lieat generated in the beam has
suflicient time to conduct from regions of elevated temperature to
regions of lowered temperature. As a result the temperature remains at
the reference temperature, hence, the magnitude of No is very small
and appraches zero. For example Né)zo at Q=I3 (which is

correspondes to isothermal boundary conditions).

2- On the other hand, when the frequency is very large the heat has no

time to conduct from regions of elevated temperature to regions of -

lowered temperature; therefore, the temperature corresponds to
adiabatic boundary conditions. From the solution of the differential

equation(3-4.8)we see that as the frequency approaches infinity QQ—o

®

N =2Y
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This solution is evidenced by a nearly linear variation of No with Y at
3
Q=1\0. Figure (3-6.1) shows spatial dependence of the magnitude of

normalized temperature for fixed frequencies and from this figure one can
. !

see that W slightly changes with Y for smaller values of normalized
*

[requency, and the variation of W with Y becomes linear for larger values

of Y. Fipure (3-6.2) shows the phase of ¢ as function of Y and from this
L]

figure one can say that for all small values of Q W is independent of Y.

L]

Simce ~N is an odd Function of Y, then:
$(Y)=0(-Y)+n

: : \ .
Accordingly, ‘we have considered osY510111y. Now let us consider the

[ _M_;fi_]
¢ = t;:l - C?+ D’ -
sy _ AM+N)
[ S(C? +'n2)L

Substituting for the valuse of a, b, ¢, D, E, F, M, N we get:

case when 2-0.0:

a = sinh(o) cos{o) = 0.0 , b = cosh(o) sin(0) =0
C = sinh(o0) cos(o) = 0 , D = cosh(o) sin(o) =0
k£ = sinlo) cos(0) =0 , FF = cosh(o) sin(0) = 0
M=0 N=0

Substituing in ¢ we get:
-1
0.0
$=tan| — 1= kil —
0.0] 2
This means that the temperature leads the curvature by angle (;j

and essentially is independent of Y. Alo as Q—eo the tempardture is in

phase with the curvature, as expected. Figure (3-6.3) shows the frequency
*

dependence of W for fixed values of Y. Since No is an even function of Y
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Figure [3-6.1] Spatial dependence of the magnitude of the normalized

temperature for fixed frequencies |3].
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3-7 VOLUME AVERAGED DAMPING COEFFICIENT

Next we consider the Volume averaged damping ¥

w0 Yo {— 1] sinh(2S) - sin(2S) - 2cos(S)sinh(S) + 2sin(S) cosh(S)
. §2 S cosh(2S) — cos(2S)
B (3-7.1)
where
1
S=n(Q/2)2 Q=01
=P ch? | , Yo = 2palET,

nlk? _ pc

Figure(3-7.1)shows the frequency dependence of normilized damping -‘;I’J_
)

It is important to note that this curve is a universal curve for all beams of
rectangular crossl section in flexure; each beam is classified by two of its
thermoelastic properties:

1.  The characteristic damping, Wo, which is a material property

2. The characteristic time, t, which is a combination of material properties

and structural property (h). It can be easly shown from Figure (3-7.1) that

there is  a maximum value of normalized damping Yo corresponding to
]

=0.5.

max

certain frequency Q (say Q=1.0). 1.e _q_l}:_
(1]
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CHAPTER FOUR
THERMAL DAMPING COEFFICIENTS IN ELASTIC
PERFECTLY PLASTIC MEDIUM
4-1 INTRODUCTION:

In this chapter the magnitude of thermal damping coefficients in
clastic perfectly plastic medium is evaluated based on the basic concepts
of thermodynamics and plasticily. The solid material is assumed perfectly
plastic and the rclation between stress and strain obey's the total
deformation theory.

Although 1t is important to say that temperature have a definite
influence upon plastic behavior of real materials, it is customary in
plasticity to assume isothermal conditions and consider temperature as a
parameter. One of the most used model in analyzing plastic behavior of
real materials is that one shown in Figure (4-1.1) below where Oy is yicld

siress. G

oy

Figure 4-1.1

The Tresca yicld condition (Maximum Shear Theory)[2], says that
yielding occurs when maximum shear stress reaches the prescribed value
(constant value) Cy. When referred to the yield stress in simple tension

: . A . . .
this constant Cy is equal to 5 Oy » where o, 1s the yield stress, i.e

1
Or-0C§1 =0V ,» E(UI-GIII):CY .............. (4-1.1)

where o, , o, , are the principal stresses obtained from Mohor's Circles.
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4-2 BASIC EQUATIONS WHICH COVER THE MOTION OF
ELASTIC PLASTIC MEDIUMI

In this section the basic equations which cover the motion of elastic
plastic medium are summarized. These equations are used later onto

develope the coupled heat conduction equation in elastic - plastic medium.

For a contineous medium undergoing small strains and rotations the

equations of motion are using (Newlon's Law): ..

Gijli =P Vi e (4-2.1)

where Sij is the stress tensor, p is the mass density per unit volume and vi
is the velocity vector. Using equation (3-1.1) the strain displacement
equations may be written as

i = '%(Ui.j + Uj‘;) ....................................... (422)

where o) and €jj are respectively, the components of stress and strain, vi
are particle velocity components, and p is the constant mass density. In an
elastic state the medium is assumed fo be linear, homogeneous and
isotropic. If plastic response is governed by the Von-Mises Criterion and

isotropic work hardening, the complete stress-strain equation becomes (2]

.Eij = Qi Ol s (4-2.3)
where
Qiju= C_;,-l.(.+ Goffyofip e vre(4-2.4)
Ci—j:&l‘ = ‘l—:"‘i Ok S — % 81 SkLreerers(4— 2.5)

where v is poisson's ratio,dy is the kronecker delta, and E is Young's

modulas, and
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- (4-26)

aO‘ij

where [ is the loading function given by {9, 11]

I 2
r:isi,l_, Sy=K? e e (4=2.7)
Sij=sij-3s kk 651 srsesscceass ........(4"“2.8)

and K is (he yield stress in pure shear. Finally G is a scalar function of K
and controls the plasticity of the material. Inverting equation (4-2.3) yields:
e .
Gij =l’ijkL GKL.." oooooooooooo (4_209)
where

Pijt = Cijla = I8k 8, + didin ] weerernnnnc(4-2.10)

Ciike = Myt + (S Sjt + Bite Sit) weereeeen(d=2.11)

41t GK?

T GiT (4-2.12)

where A and yu are lame constants, and h =

The case h =0 corresponds to an elastic state and h = 1 to perfectly

plastic state. Substitution of equation (4-2.2) into (4-2.9) leads to:

6“ = PijkL UKL e (4-2]3)

Equations (4-2.1) and (4-2.13) which governs the motion of the

elastic - plastic medium, are a system of nine - first order linear parial
differential equations with nine unknowns ojj, v .
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4-3 STRESS STRAIN RELATIONS AND ENERGY EQUATION
FOR ISOTROPIC LINEAR ELASTOPLASTIC SOLIDS.
In this septibn the stress strain relation and energy equation for an
isotropic lincar clastoplastic solid are derived from thennodynamic
principles. Some necessary concepts will be introduced first with reference
| to the one dimensional model and will then be exiended to a general,
clastroplastic solid and to three - dimensional states of stress.
First it assumed that the assumption of small displacements and
small displacement gradients is valid, thercfore one can decompose the
strain tensor into elastic and plastic components, Now using the assumed

model ol"Figuré._ (4-3.1) let ¢ be the total strain of the entire model and let
0

¢, n=123, be the total strain of legs 1, 2, 3.[6,17].

IFigure (4-3.1)

Then from purely kinematical considerations, one can write:

i 31 2
C=C+ECC="0C .ooirerrrrrriraaenn (4-3.1)

Also assume o™ denote the elastic strain in each leg and e® denote the
Ce Sy

plastic strain in each leg , then
[}] n n

e=ccte,, n=52,3. . (4-3.2)

1 1 12 2 23 3 3
e=eetepe=ccte,,C=C0pt ey

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit




57

devolope the coupled heat conduction equation for elastic plastic medium,

which yield:
L] * o)t L]
pcT=0cij gj—-al ow—qi,i+pR ....... (4-3.7)

where p is the mass density per unit volume , ¢ is the specific heat per unit
mass, a is the coeflicient of thermal expansion, T is the absolute

p
“equilibrium temperature, R is the heat flux supply per unit volume, €;; is

the rate of change of the plastic strain tensor per unit time, and ¢y is the

rate of change of stress tensor per unit time.
Now. for this class of problems i.e elastic perfectly plastic medium
one assumes that the rate of change of plastic strain tensor with respect to

time is negligible, therefore:

.I)

where K is thermal conductivity of the medium. One may asstume that

there is no heat supplied to the system t.e

Now rewriting equation (4-3.7) using equations (4-3.8) and (4-3.9) leads

to

pC ';'= -uT, ;kk’fk'rsii s (4-3.10)
or

Ty= 25 “']"‘0 Ol oo @3.11)

Equation (4-3.9) is the coupled heat conduction equation for

clasticplastic medium which contains both thermal and mechanical term.
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One may also assume that the plastic deformation process is irreversible
process, [7,10] and the entropy created due to this process can be

calculated from the second law of thermodynamics [2] as follows:

OSP_ K 4 i i o d-3.12)
a t p'l'z'r

where Sp is the entropy produced per unit mass. When the entropy is

created part of mechanical energy is converted into heat, according to

AW =pT0O SP oo, (4-3.13)

The stored energy can be calculated from [3]

1
W =EO' §j EQj e, (4-3.14)

Consider a thermoelastic perfectly plastic solid undergoing a steady
time - harmonic deformation. Assume that AW defines the dissipation of
mechanical energy per cycle, and W identifies the maximum stored strain
energy during that cycle. Define alocal specific damping capacity (SDC)

as:

W = (4-3.15)

Also as before define the volume - averaged damping as:

CJAawaw  Jwipwaav
fw.dv J\V.(l;_f

Equations (4-3.6) through (4-3.16) constitute the general theory of

s

................. (4-3.16)

thermoplastic damping. In the following we will solve heat conduction

equation for adaibatic boundary conditions.
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(4-4) BOUNDARY VALUE PROBLEMS :

FLEXURAL VIBRATIONS OF RECTANGULAR CROSS
SECTION BEANMS IN PLASTIC MEDIUM

In this section the coupled heat conduction equation is used to
develope the general theory of therinal damping in elastic-perfectly plastic
solids. Consider an isotropic, lomogeneous, thenno elasto plastic, beam
with constant rectangular cross section and height h undergoing time
harmonic flexural vibrations in the x-y plane.

Assume that ,t-he change of original dimensions of the beam is very
small, therefore ,tli‘e beam cross section is still rectangular after
deformation. Also assume that the material of the beam is elastic perfectly
plastic that the Celll.iEI'iOdal axis occupies x-axis and the displacement is

confined to the y-axis. Let the curvature of the beam be given by

where Ko is the initial curvature of the beam, and ® is the circular
frequency in radians per second.

The total stress can be written using total deformation theory as [2]

ou=—Ekogy €@ (4-4.2)

where v is the poisson's ratio, and E is the Young's modulas. Now

o= — EK,y. o ... (4-4.3)

Substituting equation (4-4.3) in to (4-3.9) yields

orr pcdT _ aloLiok,

= elot o (4-4.4
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The beam surfaces are assumed to be adiabatic, i.e :

_QI[:EJ)=§I(E’)=0£ .......... (4-4.5)
wyl2") o\

Next introduce a complex temperature which takes the form

where Wy)is the unknown spatial variation of the temperature in y-
direction a cross the beam. Using Thomson effect the decrease in

temperature can be calculated as:

AT==2.6.T0 oo, (4-4.7)
pc

Define the normalized temperature 7 as follows :

In the same way define a normalized coordinate as:

Y== (4-4.10)

= |-

Also define a normalized frequency as:
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Q=0T cvvrienerenen (4-4.11)

where 7 is the characteristic time of the bean defined as:

................... (4-4.12).

Substituting equation (4 - 4.6) through (4- 4.12) into equation (4- 4.4)

yiclds:
y

CAN(Y -
( “(,z—)“ iQn? N(Y)=-2inkQY....(4-4.13)
a0

One can see that this equation which describes the temperature
variation along y-axis is similiar to that in elastic range. The only

difference is the magnitude of the normatized temperature which differes

by AT.

(AT)elastic

T (4-4.14)

(AT)plastic =

(4 - 5) : SOLUTION OF BOUNDARY VALUE PROBLEMS:

In this the section coupled heat conduction equation (4-4.13)is
solved and the magnitude of the thermal damping coeflicient is calculated.
Following the same procedure for solving boundéry value problem in the

elastic range the following is obtaned:

_ N(Y)= N(Y)lliomogeneous + N(Y)|particular
vt e (4-5.1)
where C,, C, are constants to be determined from the adiabatic boundary
conditions, and H is a constant defined according to the roots of the

homogenous part of the differential equation i.e:
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anN(Y) -
dy?

Thus by comparasion with the standard forin of differential equations with

complex coefTicient one obtains:

Now write equation (4-5.1) in the form

®

N(Y)}=2Y +Cyq isinh(HY)cos(1IY) + Cysi cosh(HY)sin(HY)

where Cy, and C5 are constant's to be determined from boundary

conditions. From the adiabatic boundary conditions one has:

ONf-T =6_N-[1 20.0 e (4-5.5)

oY\ 2 JdY\2
From equation (4-5.5) one obtains
% {2 - 2+C"i[llcosh(—%ll\’)cosb—%ll\’)—II sinh(-—%HY) sin(-—-;—llY)]
+Cui[llSinh(%IlY) Sin (—-ZI—HY) + llcosh(—%llY) cos(—«;—HY)]... ...... (4-5.6)
a_g(?ﬁ \_E? :2+C"illl:cosh(%ll)cos(%ll)—sinh(-—;—ﬂ)sin(%)ﬂ]
+Cuill[sinh(%ll)sin(%II)+cosh(%ll)cos(%il)]=0.0 ............. (4-5.7)

Solving equation’s (4-5.6) and (4-5.7) for Cyq and Cy5 and substituting

into equation 4-5.5 leads to ;
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. (=) sinh[%ll)cos(%ll)+icosh(%}{)sin(%ﬂ)
i

N(Y)=2Y-2 sinh (11) cos(H) + i cosh (H)sin(H)

#[sinh (HY)cos(HY) + icosh(HY)sin(HY)]

Sp=— K __ LIINV)) . (4=5.9)

Assume B as

. 1 i . 1 . (1
_2(]_0 smh(—z—ll)cos(—zll)Hcosh(EH)sm(iH) (d=5.10)

H sinh(H)cos(H) + i cosh(H)sin(H)

B=

Combining the above relations , yiclds

;\I(Y)— N(Y)
VR

Or

=2V + B[sinh (1Y) cos(HY) +i cosh(HY)sin(HY)]....(4-5.11)

N(y) = AT{2Y + B[sinh (1Y) cos(HY) +i cosh(HY)sin(HY)]}....(4 - 5.12)

6N(‘Y)= {Z-HIB[cosh HY)cos(llY)—smh(llY)sm HY)]

oY iHB[sinh(HY)sin(HY) +sinh(HY) cos( HY)] }...(4-5.13)

Squaring equation (4-5.13) and also squaring equation (4-5.11)and

substituting into (4-5.9) one gets the  local specific damping capacity in

the elastic perfectly plastic solid as:
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(N |
L= on2y2 cosh(2H) — cos(2H)

el fn(+3]
R zcos[n("-* %)]“’S"{"[Y - %)]

-2co0s "\Y+5) cosh| H Y——)

[ (3 [ (1
+2 cos ll(\ -5)] cosh ll(\ +5)]

+ 2cos(H) cosh (2HY)
- 2cos(2HY ) cosh(H)

+cos|:2[l(\'+%)]+ CUS[ZI,[\,_%)
) “’SI'[Z'I(Y * %) - °°5"[2“(Y ~ %)] {4 -5.14)

~ Integrating over Y from ( %\ to %‘l ) one obtains the volume - averaged

damping ¥ as

W 6 ‘{’o{l _l sinh(211) —sin(211) - 2cos(H)sinh{ H) + 2sin(H ) cosh(11)
it cosh(211) - cos(2H)
........... (4-5.15)
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Figure [4-5.1] Spatial dependence of the magnitude of the normalized

temperature for fixed frequencies 13].
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Figure [4-5.2] Spatial dependence of the phase of the normalized

temperature for fixed frequencies|3]
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Figure (4-5.4) A comparison of the present exact solution with the

solution of zener
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CHAPTER FIVE
EIGEN SOLUTIONS FOR COUPLED THERMAL
ELASTO -PLASTIC VIBRATIONS AND
DAMPING FOR RECTANGULAR CROSS
SECTION BEAMS.
5-1 INTRODUCTION

In this chapter the general formulation of the vibration boundary
value problem was presented and the governing equations for the free-
vibration boundary value problem of rectangular cross section beam under
- general mechanical boundary conditions and thermnal boundary conditions
that follows Newton's surface heat exchange law are presented.

Let us Consider a rectangular cross-section beam of thickness 2a
and length L. Let t be the time, and let x be the axial coordinate, and y be
the thickness coordinate of the bcam as shown in Figure (5-1.1)

Now we will extend the previous theory in chaptes (4) and (5) such that
the magnitude of the thermal damping coclficient can be calculated for

beams other than Bernoulli - Eulcar beams.

/,l)

/ -4
figure 5-1.1
Assume the beam vibrates transversely in x-y plane, U(x,t) and

W(x,t) are the centroidal axial and transverse displacement components of
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the beam, and let ¢(x,t) be the angular rotation of a generic beam cross

section. After deformation the displacement components of the beam nay
be wiittenas []
u, =_U(x,t)+¢(x,t).y .......... (5-1.1)
u.‘.='v(x,t)=W(x,t) ............ (5-1.2)

where u, and u,, are the displacement components in x - y directions, Now

Y

let o, and 14y be the axial and shear stresses respectively. Then from the

principles of linear thermoelasticily one obtains:

' . Ju . ou RN
0x=[LEx —E(IT=E(6:—(II]=E(-E(—+)(—5—X—“(IT] ...... (5—13)
du, 0uy ( aw) :
=0 2L = Gl Ot e 5-14
) (6y+6x) UFp G-14)

where E is the Young's modulas G is the Shear modulas, o is the
cocflicient of thermal expansion, and T is the the temperature change from
the uniform initial absolute temperature To of the beam. Now assume the
followmg :

N(x,!) axial force along the beam, V(x,1): shear force along the beam,
M(x,t) bending moment at section x. The force balance using Figure

(5-1.2) yields [C«]

cofOU . 0
N(x,) = | cx.dA—jE(ﬂ+y—(ﬁ—a1).dA

Arca

Q_H_NT T T Trenesssonrsnss (5_15)

=E/\ax

V(x,t)=_[S Ty dA = = SAG[¢+6‘:) ......... (5-1.6)
A :
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where S = 0.9 is the shear correction factor, | is the second moment of

incrtia about y-axis, and A is cross section area of the beam,

Np=Ea[TdA , Mg = Ea[yTdA.......5-18
A A

Noting that N;, M, are the thermal axial force and bending moment

respectively.
-2 : EQUATIONS OF MOTION :
From the principles of balance of linear and angular momentums one

obtains ;

. summing Forces in x - direction yields:

> F =mX
0N _pa 22U _9 Ny =
S PAU=EAS -5 T p A U= O (5-2.1a)

2. Summing forces in y - direction yields :

2 Fy=my

ov
< pAW 0

or
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56 . ow .
SGA(a Xt o) pA W=0........ (5-2.1b)
By summing moment about any point on the right face of element one
obtains ;
Y Mo = 1D
Jd M ¥
—=-V- =0ierrneen 5-2.
s—-V-p 1§ =0 (5-2.2)
9 OMq oW .
E — — J — ] = = vaea -2
l"lax2 3% SGA( GX) plé=20-.(5-2.3)
Therefore the governing equations of the free vibration of the beam are:
?U 8Ny o
EA 3 X.Z_ 37X —-pAU=o--- (5-2.4)
a¢ aZW _ o
SGA[6X+6X2) pAW=0  (5.2.5)
026 8 My oW D
El 5 % 8 X —SGA(¢+6 X)—p [ $=0-- (5-2.6)
Where

S is the shear correction factor (S =~ * 9 for rectangular cross
section beams), G is the shear modulas, I is the second moment of inertia

of the beam, pisthe mass density.

[5 -3} Mechanical boundary conditions :

In-this section a general form of mechanical boundary conditions are
presented. For mechanical bonndary conditions one must know at X =0
and X = L one of the following pairs :

1. Axial Force N or centeriodal axial displacement  U.
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2. bending moment M or angular rotation of of the center of the
beam.

3. shear force Vor transverse displacement W,

The general boundary conditions may be written as follows :

(i)N (0,1) -K U (0,t) = N (L,t) +k,U (L,t)=0---(5-3.1)
(ii) V (0,8) ~kyoW(o0,t) =V (L,t) +k_(L,t)=0 --- (5-3.2)
(iii )M (0,t) —kgo ¢ (0,t)=M (L,t)+k¢|(L,t)=0 e (5-3.3)

where K, Kypoand K 4m(“ =0,1) are poistive proportional constants.

Each of these constants expresses the relation at the end condition
between force and moment with their corresponding displacement and
rotation - components. The goveming equation between heat condition
illroltgll the beam when including rotation may be written as follows

[7,17]):

2 2 : .
R AL +rCgp T+EaT ﬂ+yﬂ =o...{5-3.4)
oX? oay? aX °~oX

This is known as two way coupled heat conduction equation . For this
type of problems A T is very small which means that equation (5-3.4)

may be written as
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2 2 .
0T oT ' Y ¢ |_ _
-K a?‘*'w +PCE T+ Ea To 3 x+y6x =0 (5 3.5)

90U - 9é o
Note that U—-a t,d)-a t (5-3.6)

where K is the coeflicient heat of thermal conductivity of the beam

material, C is the specific heat of the beam material at constant

E

deformation, T is the temperature change form uniform initial absolute ,

temperature. The general form of the thermal boundary conditions may be

formulated as follows:

(i) K g—;j: KrT=0, y = + au. (5-3.7)
(ii) k g—T + Ky T=0, x=0,L ... (5-3.8)

where Kn ( n = T,L) are the coeflicients of surface heat thermal

conductivity ,andwith T = o represents isothermal  BC's,
K,= 0 represents thermally insulated BC'S.

5-4 Solution of Longitudinal and Transverse Vibration
Eigenvalue problems

In this section and in sections (5-5) and (5-6) a general formulation
of the viblation boundary value problems and complete eigen solutions for

the flexural vibration eigenvalue problems are presented.
To solve the boundary value problems for rectangular cross section

beam , which are formulated by equations in sections (5-1), (5-2) and
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(5-3), it is convenient to introduce the following nondimensional

quantities:
_X =Y U wo¥W
=L o=V V=3
2

« aT _a e E a To
M= % o= A= oot B SR

SGAL? Ki a Kpa

1

0, =(EI /pALY) 2 | 1.=pCga¥K .o, (5-4.1)

where f} the thermomechanical coupling parameter.
oo the reference frequency in radian per second

o relaxation time of thermal diffusion.and let us assume also

At R At
U=ule, W =w(l)e

At At
p=cd(e, T*=0ec ... (5-4.2)

Now substituting equations (5-4.1) and (5-4.2) into the equations (5-3.1)
through (5-3.7) one obtains: '

u’ —c?A2u—-cinp =o for o <}<l....... (5-4.3)
w(})-nr(}) kst = 0 at ! =(6) .......... (5-4.4)

s(d'+w")-Aw=o0
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¢ —(s+cA)p—sw—mtr=0 for 0<}<l ... (5-4.5)

(N +w(H+ K“-;W(})'—-" 0

$())-mr(})+Kpo())=0

where
1 1 3+I
nT(]):EJO(},n)dn ,mﬂ}):ijﬂ(],n)ndn ..... (5-4.7)
-1 -1
Dsvi0=0 ,atn=+1 oo (5-4.8)
on |
80 " 1
é} ivLO:U [ Elt }=(6‘) uuuuuuuuuu (5'4-9)

where the prime indicates differentiations of a function with respect to its

argument. Starting with coupled heat conduction one obtains:

(3 a 24
_k(w‘*'ay )""'pCEl’*'EalO _'+ya = .a 000000(5"4.108)
and

—"-E- —te T =~Z —_— -
} = - SN=go Rt (5-4.10b)

oT _aT 8} _aT |

x_dox oL e (5-4.10c)
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5-5 Case of Rectangular Cross section Beams:

The governing equations (5-4.1) up to (5-4.11) are now to be solved
A solution of coupled heat conduction equation (5-4.11) 1s sought as

follows:

0=X(}N+ YD) +Z()eeuerens (5-5.1)

00 0, 2Y 0z
a1 oy ey )

0% _ % 9 0%

L L 5_5.2
op ot Mo T oy ( )
08 oJx ,
0 o«

O e 5-5.3
ant oyl ( )

- Now substituting equation (5-5.1), (5-5.2) into (5-4.11 ) yields:

Cz(axz Y 622] 82x

o) + N Pk +a}2 +61]2 —AUX+ Y +Z)=BAt(U/C + 1)

Next breaking (5-5.4) into the following equations:

29X 0X 3iX20 for 0<) <=1 <n<Lo(5-55)
6}2 o’

c2? Y}(j) At YO)=PAz ¢'(}) for 0<) <1.....(5-5.6)
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For the mechanicand and the thermal boundary conditions ,and from

equations (5-4.8) and (5-4.9), one has:

0=X(. M+ Y+ Z20).......... (5-5.10)

o dx
Tt — (5-5.11)
0 dx= 0Y  dz

- e Ta

Substituting equations {(5-5.10), (5-5.11) and (5-5.12)} into (5-5.8)

one obtains:

3;‘]+Y{})+\LT(x+1]Y+7) O oo (5-5.13)
dx dy dz
d}+ a d} VL(X+1]Y+Z) 0 e (5-5.14)

From (5-5.14) one gets

dx

ay tViX =0 at}=() ......... (5-5.15)

ly 1
‘d—}ivazo at}=(6) ....... (5-5.16)

92 yviz=0  aty={)...(5-517)
Y 0
And from (5-5.13) one obtains
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%‘:—]iVTXz—(|+VT)Y(})iVTZ(}) at  }=#1....(5-5.18)

Also write equation (5-4.7) as follows:
l+| 3+l
nr()) =5 [00.mdn . mr(})=5[0(}, m)ndn
-1 -1
+1
nr(}) =5 [IXC.0)+ V() + Z()ldn
-1
|4
nT=§Ix(},1])dl]+Z(}) ....... (5-5.19)
2

+1
my(}) = % I[X +1Y + Z).ndny
2

5-6 Solution of thermal part of cigenvalue problem:
Now equations (5-5.5) ,(5-5.6), (5-5.7), are solved to the boundary
conditions in equations (5-5.15) and (5-5.16) and (5-5.17) i.e:

,262.‘{ 62.‘( ) \
C -az—Jrauz—l‘rx:O for 0<)<l,-l<n<l...(5-6.1)
9x(j,m) - o[ L _

31 TV, =0 at ,—(0 .......... (5-6.2)

Substituting equation (5 -6.3) into equation (5-6.1) yields:
CZX"] X2+ X| X"Z—A,T XI X2= 0........ (5—64)

Now rewrite (5 - 6.4) as follows
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an + Xuz A.T
Xy C*X, C?

or

X"y _ o2 At Xy,
X "t oCX,

Il

(5 - 6.5)

or .

X (}) =A1ac0s atp} +Byysin ap}......(5 = 6.6)

where A, By, are constants to be determined from the boundary

conditions. Also from equation (5 - 6.5) one has:

—At+ ))((—22- + Ctal

or;

X" 2.2 2
—)(—2'=(A.T + C a")=},l n

XZ(I])= An cosh pZ, + Bosinh jt,........ (5-6.7)
where An, Bn are constants to be determined from equation (5-5.18) by
using Fourier integrals. Note that
un=\Ar+ Claxl\\% .......... (5-6.8)
Now go back to equation 5-0.6 and substituting into (5-6.2) one

finds that at £ =0
'A|“= a,, B|“ = VL e (5-69)

The general solution of equation (5-6.1) may be written in the form:

X}, = D (AnCosh p,.n+ B,Sinh p,.n}(a,cosa,}+npsma,})

n=o

................. (5-0.10)

To find ay, values go back o equation (5-6.2), at } = 1, one obtains
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X)(})=(a,Cos ap)+ Vp, Sinag))..... (5-6.11)

ﬁxa—';’—’.tva,(})w all=l (5-6.12)
Substituting (5-6.11) into (5-6.12) leadsto  at } =1

-—alzl Sin o, +a,Vp, os o+ Vi Jaycos ap+Vy, sinoag]=0

~o*n Sin o, 42 a,Vy, cos a“+VLZSin Uy =0 uneens(5-6.13)

Dividing equation (5-6.13) by [cos o] leads:

—ai tan oan +2 o, Vi, + \-’Lz tan o, =0.0

or
2V, .,
tan o= I s 5-6.14
an _\;L
gy s0Yyennnnes a, are the roots of equation (5-6.14). If V= o this
means that tan o= o0 or sing,=o0 i.e
Up= N ceevenrenes 5-6.15
Oy= Ty 27,37,

Now substituting of equation (5-6.10) into (5-5.19) yields

I+I
()= Jxmydy, +2(3)
"4— [+s)

DY
=TJ = (An Cosh .1 + B sinh p,,.n)(ay,. cos oy} +Vsina,})+Z(})

In o

np(})=2(})+ E (f\j—st—:‘—pﬂﬂJ(an cos o} + Vp, Sin ay})....(5-6.16)

n=o
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Also substituting equation (5-6.1) into (5-5.20) leads to

3+l
mp()) =2 | XO.njndn+Y()
-1

+1 o
= Y(})+% j Y [An Cosh py,.n+ Bnsinh py.njla, cos ag}+ Vp sin a,}]n.dn

—In=0 i

mp(})+ Y, BBn[ Coil My _ sinh ;“ ]x (a,, Cos a,}+ Vi sinap}).....(5-6.17)
n Hn

n=o0

d x(},m)

TALM 4 vix(h,m) = ~(1+ Vi) Y() £ WZ(), atn =

> [An pn sinh pnn + Bop, cosh pnn][a, cos oy} + Vysinag}] £

n=o

V. X [An cosh pnry + Basinh pn[a, cos ot} + Vy, sin pn})

n=o

=-(1+Vp)Y()YEVZ()) am=+i ... (5-6.18)

Addition and subtraction of two resulting equation of equation (5- 6.18 )

will result in
an

2; An{gt nsinh pn+ vy cosh pn) x (e, cos o, ) + V) sinet,}) ==vp Z(}) ...(5- 6.19)

2:_ Bn(jt n cosh pun+ vy sinh pn)(a, cos o, ) +V sine z}) = ~(1+ v).Y(})...(5-6.20)
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5.7 EIGEN SOLUTION FOR FREE TRANSVERSE
VIBEATION BOUNDARY-VALUE PROBLEM

Now consider the previous beam with lateral surfaces thermally
insulated and end surfaces kept at constant temerature. To begin with frist
substitute equation (5-6.17) into equations (5- 4.5) and (5-4.6) to eliminate

m leads to the following system of differential equations.

_ = coshun sinhpn . a
m.(})=Y(})+ Zo 3 Bn( o i ) x (ot cosapx +Vy,. sinag})..(5-7.1)

From (5-4.5) and (5-4.8) we have :
¢"—(s+ c? l2)¢;—5\v'— mp= o for o < x >1.

3()+w () ke W(l)=0 at}=(%)
o' (})-mp(}) t kyy 60) =

The general Solution of the above second order linear differential

equations with zero shear force at bothends and totation is given by

¢ (})= io B; (atgsin a,} —Vicosap})...(5-7.2)

» BySa (a, Cos a,}+V Sinag})

)= +|ZIO (S (1;‘: + x-Z)En

Z: B (ﬁl‘ca ](az Cosa, ) + Visina,))...(5-7.4)

..(5-17.3)

f (A} =3(p » Cosh p,—sinh p,)/ pl....(5-7.5)
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Substitution of equation ( 5- 7.4) into equation ( 5-6.20) gives

w 3
> B, hn(a,,cos & +Vsin o) =—(1 +VT)Z
h=0 K=1

BA O (Cyesinh Q& +Cxy3Cosh QE)en.(5-7.7)
ClQg-AT] ™

where (2= 0) is the characteristic equation of the system. The roots of

the characteristic equation are the eigenvalues of the system. The general

form of the characteristic equation of the system of equations is :

a'fl 1+F [+ Function{A,nnc)=0.0........... (5-7.8)
where  fA is the thermomechanical coupling function will be determined

later in chapter 6 and 7,and the charecteristic equation has the form:

h,= p, cosh p, + V4 Sinh pt,—Pyecnnnn (5§=7.9)

where

2
Po=(1+Vy)p L1al Fyf pn gy (5-7.10)
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CHAPTER SIX

THERMO ELASTO PLASTIC DAMPING COEFFICIENT
CALCULATIONS WITH FREE ENDS FOR SIMPLY SUPORTED
BEADM. |
6 -1 INTRODUCTION

In this chapter the coupled heat conduction equation is solved and
the magnitude of the thenmomechanical coupling function that arises from
the characteristic equation of the system is presented. The magnitude of
thermo elastoplastic damping coeflicient is obtained in a closed form

coresponding to the adiabatic , mixed and isothermal boundary conditions.

6-2 ADIABATIC THERMAL DANMPING COEFFICIENT
| For nc=o}
Now return back to equations (5- 7.9) and (5-7.10) one has the

characteristic equation h, :

h,=p,coshp,+VSinhp,~P........ (6-2.1)
2
Po=(1+V)p Lt 0/ nn gyee.. (6-2.2)
1
Hy= (l‘t +C20'.12|)'2 ........... (6-2.3)

let Vy=o0.0, and from equation (5-6.14) one has for the adiabatic

boundary conditions

This means that equation (6-2.1) can be written as :
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prI{h n) F,

hnzllncoSh lln_ 2 onnnouluunuuuuunuuuu(ﬁ"' 205)
pn. g,
From equation (5-7.6) and equation 5-7.7 one obtains :
2
f,=3 (uncosh [TIREEST I TIN DATY WO veerasresnessnssncsses{0—2,6)

2 .
gn(k) =§ lzl(s afl +A.2) + aﬁ(l+ BAT/ n n) +C2 A2

N
g (1) = [s A%/(Sn? x? +x2)] +n? gt (1+ B A /n) +CIA i (6~ 2.7)

Substituting into equation (6-2.1) leads to:

BAt(nn)?* 3(pncosh pn-sinh p.n)

hn=pn cosh pn- 5 (6-2.8)
.2 2J s A 1+PAT 242
pun ¥ u"[[s(nn)2+lz]+(nn) ,  [+C*A
‘ nn
Nowset N, = 0.0, e (6-2.9)

From equation (0-2.9) and alter manipulations one gets :

2 5
l —‘—l-—- ~|(mt)2 {l +~“—M]+C2k2}* pncosh p =3, |'H|.'|:(mt)2 (pn cosh pn- sinh p.n)

_s(nn)zﬂ.z_ pn?

Now divided by cosh p,, yiclds

- n - 2
l sA- +(||n)[l+ﬁl:]+ ci?

5
3 .2 un= 3pac(n n)z(un - tanh p )., (6-2.10)
L.w.(mt) 1A pun” '

After manipulation of equation (6 -2.10) , one can write it as follows :-
Sa?
S(mt)2+?L2

where FB(A 1) is the thermomechanical coupling function given by
(
l"n(l 1, nc) = Prei. 1- 3 *[lw—t-‘r—lyﬂ—u—'l) veene(6—2.12)

jLn un

2
(nm) 1 +Fp(a1)]+ +C A% 0,000 0enn (6= 2.11)

where  pn =[(cnrc)2+l1: 2
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Now when the thickness of the beam ¢ becoming very smalli,e ¢ — 0.0,
the thermomechanical coupling function F can be written as

. anh

Fg(X t,0) =Fo(X1)= BTAL 32(1— tan ”")

2 nn
in Mt n

Next the magnitude of the thermal damping coefficient.calculated
when ne — 0.0 that is p,= VAt

Substituting the value of pn into un(lt) gives

l"B(Ar,o)=Fﬂ(At)=[3[l— 3,,(1—"'"‘}"["_‘—}] ...... (6-2.13)

P | AT
where
B : the thermomechanical coupling parameter
wo : the reference frequancy

10 : the relaxation time of thermal difTusion

- 2.- -~ l 2
B:—_—_E;?C lo, mn:( l;ll,‘J 2, 1, = pCg a” (6—2.14)
E P«

Now under harmonic motion A = i® ((02>o) , Fg 1s complex function
, The real part of this function represents stiffening effect , and the

imaginary part represents a damping eflect on the vibrated system. Assume

g, as wave length parameter , defined as

| L
E’o—ﬁg_n.alﬂ_ﬁ'f ................ (6-2]5)

Then
tanh(1 4+ )A = —SWh2A+ism2A (6=2.16)

2[1 4 sinh? A —sin? A]

From equation (6-2.6) we have the following is obtained
3i 3 . sinhy+isinh,A
Fo(At)=p|1+ = (14i)n
0(AT) f}[ ot J2(01)3? (T+4) 2|I+sinh’A—sin’A]:|

The imaginary part of equation (6-1.17) is the thenmo-elasto-plastic

..... (6-2.17)
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G
——B-&, and the real part of equation (6-1.17)

represents stiffeness effect i.e

3 (sinh,A —sinjyA)
Re|Fo(At)]=p| I - * :
[Fo(At)] Blr $2(01) 2[]+5i“||2A—sin’A]

damping coefficient i.e

Thus the magnitude of the thermal damping coefTicient for Bermoulli

- Eulear beami .enc=o01s

Gpo _ 3 _ I.UGJ}i «_Sithy20t +siny20t (6-2.19)
B ot et L2 0T 3 ot
‘ | +sinh 5 TSintyfo5

6-3 ADIABATIC THERMAL DAMPING COEFFICIENT
FOR NC NOT EQUAL ZERO

In the previous section the magnitude of thermal damping
coelTicient for Bernoulli-Elear beam is obtained, Now in this section the
magnitude of the thermal damping coefTicient for beams with nc # o will

be obtained. Form equation (6-2.12) one has

I?B(?Lt,nc)=9%1[l— 343 ‘“;"‘““] ................ (6-3.1)
pn jin Lt
3 1/2
where un = [( nne)® + ?\.‘t] ................... (6-3.2)
Substituting

A=io  (07>0) . (6-3.3)
leads to: . ‘

1/2
pn = [(nn c) + imt]
1
jn = [(nnc)4 + (wr)2]4 *Iicos%() + isin%@]...(G— 3.4)

1 . .
-—A|:cos-i()+|sm§0}

where:
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0= tan[ or } A=[(mtc)‘+((o't)”]j ............... (6.3.5)

(nmc)?
Now substituting equation (6-3.4) into equation (6-3.1) yields:

pir  3pAr N 3BAt tanh pn-

pzn u4n usn

Fg(At,nc)=

B PoTi ~ IPoti
S 1t 1P o T
A“lcos O+1sin O A%l cos O+isin-0
2 2 2 2

[&im‘c—tanh[M{cos%()—-kisin-;—(}—]

+ g eeeeeses (6-3.6)
I 1T
AS| cos_ 0 +isin 0]
2 2
O 17
c0550+isini() =cosQ+isin0 ..... (6-3.7a)
R N
cnsz()+isi||20 =c0s20 +isiny0 ..... (6-3.7b)
_sin0+icos0 e 6-3.7¢

cos0 +isin0

anh|A I[cos 2 o |sm%0] cosAqsinh Ap +isinAqcoshAp (6-3.8)

cos Aq cosh Ap +isin Aq sinhAP’
1 .
where p=cos _ 0, q=sin _0
2 2

sinh qu +isin2AP
2[1 +sinh2AP - Sinqu]

tanh A[p +iq] =

Substituting equations (6-3.7) through (6-3.9) into equation (6-3.6)

one obtains:
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(w12 +Hotfenn]? ~3 2Innc_]2+i|mtc|" 07— (o1)

F_(At,nc)= ]
A [enn ]2+ o1]? [l“’tcl“"i'lﬂﬂ‘flz]2

+_ 3|BT 3 .l[{ll-:lRZI -------------------- sessans --'(6_3°10)
l|nnc|4+|mtl2]" 2 }

where:

R=Sinh ZAq[sin 20 cos%() + cos 20 sin ;— 0] +

+sin ZAP[COSZO cos%() —sin 20sin %O]

R,=sin2AP R,;=Sinh ZAq[Sill 20 cos% 0 + cos 20sin %9] +

—-sinh2Aq sin 2AP|:c0320 cos%ﬂ —sin 20 sin%@]

2
R,=2[1+sinh2AP —sin?Aq |[R|: Sinh ZA({sin ZBCOS%O +c0s20sin —;—0] ]

+sinZAP[c0520 cos%O —sin 20sin %O] cecrnrrsnsssnenss (60— 3.11)

Now the magnitude of the thermo-mechanical coupling function
l*'“(kt,nc) which is obtained from equation (6-3.10) can be sperated into

o e . Gp .
real part and imaginary part. The imaginary part 1s ——[—3—(mt,nc)whlch

represents the magnitude of the thermal damping coefficient i.e.

Gy ot|cnn)? nrel .ot - [0 3o1R
B[ B Icmt||’+|u!t]2_ o 4 I 2 l ' | 7""(6'3'12)
[Inncl +|(0‘t| ] RS[[nnc]‘ﬂon]:] 2

Note that for nc = 0 equation (6-3.12) reduce to equation (6-2.19).
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6-4 MIXED THERMAL DAMPING COEFFICIENT:

In this section the magnitude of the thermal damping coefTicient is
calculated corresponding to the mixed thermally boundary conditions i.e
lateral surfaces of the beam are thermally insulated and the end surfaces

are kept at constant temperature. In this case the thermall boundary

conditions are:

KeT=0 aty= *a

e 6-4.1)
a1 ~ (
ké—x"— at x —O,L
or
Vi 0=0 ., atn=+I
0 [ — (6-4.2)
b—}——O ,at) = 1,0

The solution of heat conduction equation subjected to the above

boundary condition will give the following characteristic equation.

(1+ \’T)Blt(nn)zlun cosh pn —sinh jin]

[S(nm)? + A2

[

hn = 0.0 = pncoshjin + Vpsinh juy - —; 2 3 7V]
4[ SA +(nn)2[l+gk-’[+£-)l—”

Solving this characteristic equation for the thermomechanical coupling

function FB leads to:

Fg At 3(1+ Vp)At.(pncohpn — sinh pn)
—'l;* = —3‘ 3 4 oanthanl T (6-4,4)
Iy pn“ juncosh un + Vysinh pn|
\
po = [( ne )t + '\(1)1]1 . NEZ V() DUUT (6-4.5)

substituting equation (6-4.5) into equation (6-4.2) one obtains
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Fg _ (01)* +iot(nne)’ , L5212 ~ 23231 2| Z4Z3 + ZyT]

p (nnc)? + (01)? le + Zg
e (6-4.6)
The imaginary part of equation (6-4.6) is the thermoelastoplastic
G
damping damping coefTicient -BE given by:
2
GB _ wt(nnc) _ Ls| 275 + Z2Z4] ...... (6-4.7)

B B (mtc)4 +((1)T)2 le + Zg

where

A
A :[(mt)2+(mt C)d]' 4, P=cos %0 ,q=sin~;—9

0= tan” '(n:z)zl |

M =cosAq.coshAp ,N=sinAq. sinhAP

5
A|=[(mt c)4+(u)t)2] 4, P1=C083:~0 , q|=sin§9

R|=VT.[(nnc)4—(mt)2]. Ry=2mt vy [nrtcl2

Dy=sinh APecosAg- , Dy=sinAge cosh APZ;=A{[P{M -q;N]+[R{D;-R;D;]

Zy=A (PN +qyM]+[R{Dy+D R ;]
Z3=A[PM - gN]-D;

Z4=AIPN+qM[-D; e (6-4.8)
Z.5= 3(1+V)ot
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6-5S ISOTHERMAL THERMAL DAMPING COEFFICIENT:
In this section the magnitude of the thermal damping coefTicient is
obtained corresponding to isothermal boundary condition. In this case the

boundary conditions are:

T=0 'aty==a
T=0 atx=o,L

or
O0=0 at n==lI

0=o0 at £=o,l

The solution of heat conduction equation under above boundary

conditions will give the characteristic equation as:

(1+ vT)BMazn [uncosh pun — cosh pn|

hn = 0.0 = pncosh pun + v sinh pn - > "
A c’A
}l!td[ s +an2(1 + pAz +

s(ay )2 +A2 un? 3
1
where fn = [czaz.. + M]z ............... (6-5.4)
tan o,y = 2v %n 6-5.5
4 n-= L- 2 2 ............. ( . )
an —vp,

Solving equation (6-5.3) for the thermomechanical coupling function
Yy will give:
F el
Bp_ At 3(1+vy)ht.(n,coshpy —sinhpy) (6-5.6)

2 4 .
P un Mp g coshpy, + vysinhpg]

where
1

My = [czmn2 + M]z, andlet A=io then

JJ
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_lj[l _ (0 ‘l‘)2 + i(&)T[C(In lz + Z5|Z‘Z4 - Z2Z3l— i Z5|Z1Z3 + Z2Z4]

B |can|4+(mt)2 Z12+Z;

The imaginary part of equation 6-5.7 is the thenmoelastoplastic

. . (Gp]).
damping coeficient —[—3—— i.e:

3 2
(’B__ otfc.ay)”  Zs|Z)Z3+7)74]

- ouc-aal 5124237 £284] (6-5.8)
p |ca,,|4+|m1:|2 le+23§
where
I\—[(mt)ﬂ(mt"c)“]; P=cos 40 ,q=sini0 9—\2&1\ ot
) L 27 2 T Leo, \2
M =cosAq.cosh Ap ,N =sinAq. sinhAP
5 S L9
Alz[(na“)"‘+(mt)1] A P)= cosi() , ) =sm—,l-B
2

R\=V+ .[(ca“)“—(mr)l], Ry= 201 vy. eag)
Dy=sinh AP ecosAq - , D,=sinAq e cosh Ap
Li=AP M —q N+ (R DRy
Lo=N{P\N+q MY + Ry +D Ry}

Za= NLPM — N\ -,

Z4= NLPN+ M -D,

L= 3(\ N+ )(!)T
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Gpo= Img|F(At,nC— 0,B] = Img|F,(AT,B)]....(7-1.3)
It is important to say that when [nc — 0.0}, £ — o i.e the
wavelehgth parameter & approachies infinity, which corresponds to the

thermal damping coefTicient for Bernoulli Euler beam.
Now , three different thermomechanical coupling functions F B and

three thermal damping functions Gp were obtained. These functions are
pmg B

swinmarized in the following sections.

7-2 ADIABATIC THERMAL DAMPING FUNCTION- GBA-

Thermal damping  Function Gg(wt,nc,B) in which the lateral

surfaces of tlie beam are assumed to be thermally insulated and the end

surfaces are assumed to kept at T'= o0, as nc — o one obtains

3.0 L0607, sinhy2w1 +siny2et

GB“=B 3 { (7-2])
ot [0t]2 | 1+sinh?, /2% —sin?, (92
) 2 2
Form equation (7-2.1) one notes that as ot>> 1.0, then
i_ 1.0607 *Slnh zmt ----------- -oooooo(7_2.2)

Gpo=p 3
: or lot] 2 sinh w;

Numeri(;al results for G B ,Gpo are presented in Figure (7-2.2) for different

: 1
values of frequency parameter and for various values of nc(= 2. go | =
1]

wave length parameter).
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7-3 MIXED THERMAL DAMPING FUNCTION: Ggy
NUMERICAL RESULTS.

In this case one assumes that the coefficients Vyand V; areas
follows:
Ve=10 , V. =00 ... (7-3.1)
As an example let us calculate the magnitude of thermoelastoplastic
| damping function for Euler-Bernouli beam i.e nc — 0.0 From equation

(6-3.8) the following parameter values are obtained

-1 :
0 = tan| —2° 5 = hid
, | [nne} 2

1 1
r1=q=cosh-0=
=4 1 2
A= Jwt, let Ao= \/%T-
M =cosAocoshAo ,N=sinAosinh Ao
S 5. -l -1
Aj=lowt] 2 ,pr=cos>0=—=,qq=—
1 =[] Dy Sy I 7
Rl=v-|-[(l.(l—(mt)2] . Ry =0.0

Dy =sinh Ao.cosAo  Dj =sinAo.cosh Ao

5
" I(!)TI 2 - . 2 .
Z(ot)= SinA,esinhA ,—cosA, ecoshA, |- [w1)*[sinhA, e cosA,
(1) TI |- lot]*] |

5

2
Z,(wt)= lﬂ)lel *[sinA,esinA,+CosA,eCoshA | - |ot]?[sinA,® coshA ]
Z3((1)‘E)= m_t_lCos/’\OOC()shA0-—sim\osinhAOI—sinhAo.CosAo

Z4((ut) = Q;‘Isin/\oo coshA 4—sinA gsinhA ] - sinhA ;.CosA

Zs((ut)=6mt ............. (7-3.2)

Substituting into equation  6-3.7  yields:
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Gpwo _ otimc] (m)*"L\(wt)-ls(uif)+Zl(wt)14(wt)
B innc+lont P Ly(01) +L(07)

Numerical Example :

Let ot = 2.0 then after substitution through equation (7-3.2) one obtains:

A=1.000  A,=1.4142
M=0.83370  N=09889

A= 5.6570 Pi=q;= -0.70711
R,=-4.0 R,=0.0
D,=0.63496 D,=1.2985
Z,=—1.9190 7,=—12.5020
7.5=0.79016 Z,=0.241

7= 12

G
Jﬁﬂ =0-(-0.3760) = 0.3760

. G - :
Numerical results for ~BMo o different values of ot are shown in

. G :
figure (7-3.1) also different values of M for different v values of

B

wavelength parameter are shown in figure (7-3.2).
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Mixed thermal damping coefficient for
Bernoulli - Euler beam ie ne =g o .

Figure (7-3.1)
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7-4: ISOTHERMAL THERML DAMPING COEFFICENT Gpy

NUMERICAL RESULTS
In this case the end and the lateral surfaces of the beam are

assumed to be kept at constant temperature i.e :

T=oaty=xa x=o,L ... (7-4.1)
This means that the values of the coeflicient V and V| can be assumed to
be equal 1.e:
Ve=Vi= RO e, (7-4.2)
From equation (6-4.5) one has

' o
tan ad,= ZVL. —(;2—_“\’—2 ..... (7—4.33)

n L

Now substituting equation (7-4.2) into (7-4.3a) and solving yields

o, = 1305625 o, (7-4.3b)
The general formula for the isothermal thermal damping function
(}W .
i is
Gp _ ort]c.an’ _G(M,..Zu(“")'zs(““)+Z2(““)Z4(m) (7-4.4)
B ea,)t+]otf? Zi(mt)+Z2(ml

Note that Gp, is function of three parameters which are:

1- Thenmomechanical coupling parameter f3.
2- Frequency parameter (w1).

1
3-nc where § = E,é = wave length parameter.

Gf“o
B

Berneulli beam i.e nc—— o (wave length parameter g, infinite).

Next as an example the value of is calculated for Euler-
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In this case c.a,—— 0 andlet wt=5 leads to

i
Pi=q;=-0.70711 P=q=0.70711 0=3

a

N =2.3271 M =- 002610
A= 55.911 R)=-25.0
R,= 0.00 D;=—0.0240
D,= 2.5330 Z,=93.610
Z,= ~154.30 Zy=—3.6960
Z,=1.1070 Zs=30.00

Substituting the above results into equation (7.4.4) one obtains

Gpro - Zl(mr).sz(mt)+Zzz(mr)Z!(_ri)ﬂm(7_4.5)
B Zl(m1)+Zz(mT)

. Gp Gy :
Numerical results for ~ M (wt) and ' (@t,nc)for various values

p p

of frequency parameter ot and nc are presented in figures (7-4.1) and
(7-4.2).

7-5 : NEWTON'S LAW OF HEAT EXCHANG

In this section_the magnitude of the thermal damping coelficient
under thermal boundary conditions that follow Newton's law of heat
exchange is obtained. For the general thermal boundary conditions ,assume

that that these boundary conditions dbey the Newton surface heat excange

law: i.e
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KB—;[;:t Kr.T=o,aty=% 3

0T _ _ i

l\a_i—i—KL.T—o’ atx L,O ........... (7 5])
X

or : ani Vr.b=0 atn=1I

00 ' = (1-5.2)

—a—c—i—!lL.&;o—at—é—l,O .......... S

The solution of the conduction equation under the a bove boundary

conditions give :

Fp _ At 3(1 +VT)lt « Hacoshp,—sinhy,

N
B “: 11: “nc"5|‘l'n+\"r.Sinhpn (7 3)

where:

,ln{ICa,,Pm]% A =i

Fp is the thermomechanical coupling function the imaginary part of

equation (7-5.3) is the thermal damping function i.e;

GB _  o1|C.a,)? g I Lyt 702,

= eee(7-5.4
B [Capl+orf ° 722+72 ( )
Note thattan a,=2V,, za,;ﬂ ........... (7-5.5)
WYy

7-6 NEWTON'S LAW : NUMERICAL EXAMPLE

In this section the magnitude of the thermal damping coefficient as
functions the Newton's parameter of heat exchange are obtained. As an
example let us assume thatV] = 0.0, and substituting into equation (7-5.5)
yields

tana, =0 ie a,=nmt,n=12,3... .. (7-6.1)
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Let wr=9%, nm= 7" 1.e nc=\.0 Substituting into equation 7-5-4 one

obtains
Gy _ mtlmtcl2 5|2y Z 3 + 707 4] (7-6.1)
B [nnc]? +|ot)? 73 +72
-1
0 = tan ot =(.4689
(nm ¢)?

P= cosh-;-e =0.97264 , q= sin;l() =0.23231

1/
A =[(mt)2+(mr 0)4]"4, = 3.3262

M=cosAq*coshAp=0.716022*12.725=9.111b
N =sinAq * sinhAp =0.69808*12.6859 = 8.8558

5/
A|=[(can)4+(o)r)2] 4 =407.162
5 . S
p|=c0550 = 0.3881 q]=sm;0=0.92163
R1=\’T.[(cnn)4— (mt)z] =72.41vy

Ry=20t. Vr.[ca,)? = 98.696 vy

Dy=sinh Ap*cosAq=9.0834

DDy=sin Aq* cosh Ap = 8.8831 :

Z1=A [P M —q;.N]+[R.D|-R,.D; | = -1883.35- 218.9v;
Zy=Ap[P1.N+q;.M]+ [R1.D2+D|.R | = 4188.5 + 1539, 7 vy
Z.3=13.55 Z4=26.811

Z5=15(1+Vp)

Now substituting into equation (7-6.1) one gets the value of thermal
damping as function of vy at ot =5;

§7.47vp? +212.96 vy + 155.5
241.86vy2 +1566.25 vy + 2676.5

Gp
—=0.40314 -
B

Now let @t = 25, nc = I, after substituting in equation (7-6.1) one

gets the value of the thermal damping as a function of Vr as:
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2 -
~1.09 0.295 39
0.3415 4 —2007ve” +0.295vy + 10.39 7.6.3

6.89vp2 +59.12v + 185.4

Gplvr) _

Alsolet o1=70 we get:

G 2
T":o.lssmn 3.87v°r + S462vp + 5183 7-6.4

6.89vy” + 28508vy + 15398

Numerical results for the values of therma! damping coefficient as

function of V3 is shown in Figure (7-6.1).

7-7 DISCUSSION AND RESULTS

Within the context of the linear thermoelasticity theory including
thenmomechanical coupling effect, the free vibrations of rectangular cross
section beam, and then thermoelastoplastic damping coefficient functions
are studied. The surfaces of the beam are either kept at constant
temperature (isothermal) or thermally insulated (adiabatic), or the end
surfaces are thermally insulated and the lateral surfaces are kept at
constant temperature (mixed thermal boundary condition).

The govering equations are derived for the case of general thermal
boundary conditions that follows the Newton's surface heat transfer law.

The thermomechanical coupling function F-given by equations
(6-2.6),(6-3.4), (6-4.6), represents the effect ofthenﬁomeclmnical coupling
on the dynamic system. The real part of this function characterize the
stiffening effect while the imaginary part represents thermal damping
effect. Thus it is important to say that for rectangular cross sectional
beams the thermoelasto plastic damping coefficient is a function of the

\
frequency parameter ot , wave lenth parameter &= ;\—c-and the

thermomechanical coupling parameter 8. The limiting case is
Gpo(@7,B) = Im{Fo(A1,)}
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of GB as nc approaches zero, i.e the wave lenth parameter € approaches

infinity is the corresponding damping coeflicient for Bernoulli-Euler beam.
It should be noted that Zener [4] has obtained the thermoelastic
damping coefficient corresponding to Go in a serics form in which
(A =io), A is a an eigenvalue of the charecteristic equation.
The adiabatic thermal damping coefficient GgA /p is plotted as a

function of frequency parameter @t and wave lenth parameter § = —.
ne

These curves are characteristic curves and independent of beam material

Gpa
' ' . . 0
properties. The difference in ordinates between —E-—H, o7 curve and any

other curves for & < o in these figures represents the contribution of

longitudinal heat flows on the thermoclastoplastic damping coeflicient
(contributed by transverse heat flows) for that particular value of &. The
contribution of this difference for small values of ne (large values of £) is
found to be negligibly small. But this contribution becomes more important

as nc values become increases.

Also from the obtained Figures it is observed that the maxinmum
G

Iy

are almost identical for all

values of the thermal damping function

values of &. Therefore, the main effect of longitudinal heat flows on the
thermal damping coeflicient functions is to shift the Gy (®T) curves in

parallel toward the direction of increasing mr.
Also shown in figure (7-7.2) the thermal damping coelficient as

function of ®t governed by Zener's approximate formula:

k.01

G
ZZB _.988 - (I, =0.295)
1+ (k,,01)
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This formula is seen to approximate the damping coefficient

G
0 .
—ﬁﬁ-(mt) quite well where for large values of ot the error becomes larger

as ot becomes smaller. For example at

-1G 2 G ~2 -2
@t = 10,TZB= 3x10,—P2| .y = 5410, the error=2*10

error percent = 40%

The very small thermal damping coeffiecient when the frequency is
very small means that the coupling term in the heat conduction equation is
very small and also the magnitude of the temperature gradient is very
small, and therefore the heat generated due to the temperature change is

very small.
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8- The contribution of the longitudinal heat flows on the thermal

. : .Gy, -
damping coefficient functions —D s negligibly small for a large value

p

of wave length parameter & i.e (small value of ne). But this
contribution becomes more important as the value of g, becomes
smaller.

9- Temperature change due to plastic deformation is found to be greater
than that in elastic deformation.

10- For lower frequencies the magnitude of the adiabatic thermal damping
coefficient is greater than the isothermal thermal damping coefficient.

11- For higher frequencies the magnitude of the adiabatic thermal
damping coefficient is lower than the isothermal thermal damping
coefficient.

12- Temperature varied symmetrically around the axis of symmetry of the
beam for Bemoulli - Eulear beam.

13- The magnitude of the temperature change for large frequencies is

small, and this change is independent of the frequency.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



7-9 RECOMMENDATIONS:

In addition to the cases studied in the preceeding chapters the two
way coupled heat conduction equation can be solved and the
temperture can be taken as a variable and thus the mechanical term in
this equation can be considered as function of temperature.

The isothermal boundary condition can ben considered to take a value
other than zero i.e T=To and then the heat conduction equation can be
solved under this general isothermal boundary conditions.

For elastic perfectly plastic medium the heat supplied to the system i.e
pR can be considered as function of temperature and strain and thus
can be considered to take a value other than zero.

The stored elastic energy, was considered as a fucntion of stress and
strain only. But since the strains are function of temperature one can
considere the stored energy as function of temperature also.

Carefully designed experimental set-ups should be considered to

check the validity and accuracy of the derived theoretical models.
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C  THIS IS A PROGRAM TO CAL.CULATE THE MAGNITUDE OF

C THE THERMOELASTO-PLASTIC DAMPING COEFICIENT C
GB  CORRESPONDING TO MIXED, ADIABATIC,
C ISOTHEMAL BOUNDARY CONDITIONS.

OPEN (1,FILE = ADAB.OUT', STATUS = NEW")
WRITE (,%) ENTER THE VALUE OF WT'
READ (+,#) WT

WRITE (+,+) ENTER THE VALUE OF NPC'
READ (*,*) NPC

WRITE (*,*) ENTER THE VALUE OF A'
READ (+,%) A

WRITE (*,+) ENTER THE VALE OF I
READ (,%) P

WRITE (+,*) 'ENTER THE VALUE OF ¢
READ (*,+) q

WRITE (*,*) ‘ENTER THE VALE OF THETA'
READ (*,*) TH -

WRITE (*,*) ENTER THE VALUE OF P}
READ (*,+) PI

WRITE (+,*) ENTER THE VALUE OF aI
READ (+,+) ql

WRITE (*,#) ENTER THE VALUE OF VT
READ (%,#) VT

WRITE (*,+) ENTER THE VALUE OF Al
READ (+,+) Al

FOI1 = F1 (WT,NPC)

GOl = G1 (WT,NPC)

FO2 = F2 (WT,NPC)

GO2 = G2 (WT,NPC)
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FO3 = F3 (WT,NPC)
GO3 = G3 (WT,NPC)
FO4 = F4 (WT,NPC)
GO4 = G4 (WT,NPC)

FOS5 = F5 (WT,NPC)
FOS = G5 (WT,NPC)
FO6 = G6 (WT,NPC)
GO6 = G6 (WT,NPC)

WRITE (+,9) GO6
WRITE (1,9) GO6
FORMAT (6X, 13, F12.7)

(WT)*(NPC)#+2. _ FO6%(FO4*FO5 + GO4*GO5)

GO6= (NPC)*#4.+(WT)¥*2. (FO4)¥* 2+ (GOd)¥*2

END

126
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FUNCTION F{WT,NPC)

F1 =COS (A * q) * COSH(A * p)
RETURN

END

FUNCTION G1 (WT,NPC)
G1=SIN(A * q) * SINH (A * q)
RETURN

END

FUNCTION F2 (WT,NPC)

F2 = VT * ((NPC) #*4. - (WT)*+2.)
RETURN

END

FUNCTION G2 (WT,NPC)
G2=2.% WT * VT * (NPC) * * 2.
RETURN

END

FUNCTION F3 (WT, NPC)

F3 = SINH (A * q) * Cos (A * q)
RETURN

END

FUNCTION G3 (WT, NPC)

G3 =SIN(A *q) * CosH (A * q)
RETURN

END

127
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FUNCTION F4 (WT, NPC)

F4 = Al * (P1 « FO1 - Q1 * GO1) + (FO2 * FO3 - GO2 * GO3)
RETURN

END

FUNCTION G4 (WT, NPC)

G4 = Al * (Pl * GOI1 + 41 * FO1) + (FO2 * GO3 + FO3 * GO2)
RETURN

END

FUNCTION F5 (WT, NPC)
F5=A * (P * FOI - q * GOI1) - FO3
RETURN

END

FUNCTION G5 (WT,NPC)
G5=A (P *GOI +9*FOI) - GO3
RETURN

END

FUNCTION F6(WT, NPC)
F6=3%(1.+ VT) * WT
RETURN

END
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C  THIS IS APROGRAM TO CALCULATE THE MAGNITUDE OF

C THE NORMALIZED TEMPERATURE NO = GO6
C  AS FUNCTION OF THE NORMALIZED COORDINATE Y.

OPEN (1, FILE = TDCF. OUT', STATUS =' NEW')
WRITE (#,*) ENTER THE VALUE OF Y*

READ (+,¥) Y

WRITE (+,+) ENTER THE VALUE OF §'

READ (+,%) S

FO1=FI (Y, S)

GOl =Gl (Y, S)

FO2 =F2 (Y, S)

GO2=G2 (Y, S)

FO3 =F3 (Y, S)
GO3 =G3 (Y, S)
FO4 = F4 (Y,S)
GO4 =G4 (Y,S)

FOS5 =F5 (Y,S)

GOS = G4 (Y,S)

GO6 = G6 (Y,S)

WRITE (*, 9) GO6

WRITE (1, 9) GO6

9 FORMAT (6X, 13, F 12.7)

GO6 = ((2.0 * Y-FOS)*%2. + GOS*%2.)%+0.5
END

\
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FUNCTION F1 (Y,S)
F1 = SINH (0.5 * S) * COS (0.5 * S)
RETURN

END

FUNCTION G1 (Y, S)

G1 =COSH (0.5 * S) * SIN (0.5 * S)
RETURN

END

FUNCTION F2 (Y, S)
F2 = SINH (S) * COS (S)
RETURN

END

FUNCTION G2 (Y.S)

G2 = COSH (S) * SIN (S)
RETURN

END

FUNCTION F3 (Y,S)

F3=SINH (S * Y)*COS(S* Y)
RETURN

END

FUNCTION G3 (Y, S)
G3=COSH(S*Y)*SIN(S *Y)
RETURN

END
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FUNCTION F4 (Y, §)

F4 = FO2* (FO1 * FO2-GO1 * GO3) + GO2* (GOI * FO3 + FO1*GO3)
RETURN

END

FUNCTION G4 (Y, S)
G4 = FO2 * (GO1* FO3 + FOl* GO3) + GO2+(GO1* GO3 - FO1* FO3)
RETURN

END

FUNCTION F5 (Y,S)

F5 =2 % (FO4 + GO4)/(S * (FO2 % 2+ GO2 %* 2.}))
RETURN

END

FUNCTION G5 (Y,S)

G5 =(FO4 - GO4YFO2 *+2, + GO2 *x 2))
RETURN

END
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C  THIS IS APROGRAM TO CALCULATE THE MAGNITUDE OF
C  THE PHASE ANGEL THEATA =GO6 AS FUNCTION OF THE
C  NORMALIZED COORDINATE Y IN RADIANS.

OPEN (1, FILE = THETA. OUT', STATUS = NEW)
WRITE (*,*) ENTER THE VALUE OF Y'

READ (+,%) Y

WRITE (*,#) ENTER THE VALUE OF §'

READ (*,+) S

FOI =F1 (Y, S)

GO1 =Gl (Y, S)

FO2 =F2 (Y, S)

GO2=G2(Y, S)

FO3 =F3 (Y, S)
GO3 =G3 (Y, S)
FO4 = F4 (Y,S)
GO4 = G4 (Y,5)

FOS = F5 (Y,S)
GOS5 = G4 (Y,9)

GO6 = G6 (Y,S)

WRITE (*, 9) GO6

WRITE (1, 9) GO6

9 FORMAT (6X, 13, F 12.7)
GO6 = ARCTAN (FOS/GOS)
END
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